Leishmania infection induces a limited differential gene expression in the sand fly midgut

Background: Phlebotomine sand flies are the vectors of Leishmania worldwide. To develop in the sand fly midgut, Leishmania multiplies and undergoes multiple stage differentiations leading to the infective form, the metacyclic promastigotes. To gain a better understanding of the influence of Leishman...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Coutinho-Abreu, Iliano V, Serafim, Tiago D, Meneses, Claudio, Kamhawi, Shaden, Oliveira, Fabiano, Valenzuela, Jesus G
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 18.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background: Phlebotomine sand flies are the vectors of Leishmania worldwide. To develop in the sand fly midgut, Leishmania multiplies and undergoes multiple stage differentiations leading to the infective form, the metacyclic promastigotes. To gain a better understanding of the influence of Leishmania infection in midgut gene expression, we performed RNA-Seq comparing uninfected Lutzomyia longipalpis midguts and Leishmania infantum-infected Lutzomyia longipalpis midguts at seven time points which cover the various developmental Leishmania stages including early time points when blood digestion is taking place and late time points when the parasites are undergoing metacyclogenesis. Results: Out of over 13,841 transcripts assembled de novo, only 113 sand fly transcripts, about 1%, were differentially expressed. Further, we observed a low overlap of differentially expressed sand fly transcripts across different time points suggesting a specific influence of each Leishmania stage on midgut gene expression. Two main patterns of sand fly gene expression modulation were noticed. At early time points (days 1-4), more transcripts were down-regulated by Leishmania infection at large fold changes (> -32 fold). Among the down-regulated genes, the transcription factor Forkhead/HNF-3 and hormone degradation enzymes were differentially regulated on day 4 and appear to be the upstream regulators of nutrient transport, digestive enzymes, and peritrophic matrix proteins. Conversely, at later time points (days 6 onwards), most of the differentially expressed transcripts were up-regulated by small fold changes (< 32 fold), and the molecular function of such genes are associated with the metabolism of lipids and detoxification of xenobiotics (P450). Conclusion: Overall, it appears that Leishmania modulates sand fly gene expression early on in order to overcome the barriers imposed by the midgut, yet it behaves like a commensal at later time points, when modest midgut gene expression changes correlate with a massive amount of parasites in the anterior midgut.
DOI:10.1101/845867