Extensive adaptive immune response of AAVs and Cas proteins in non-human primates
The CRISPR-mediated Cas system is the most widely used tool in gene editing and gene therapy for its convenience and efficiency. Delivery of the CRISPR system by adeno-associated viruses (AAVs) is currently the most promising approach to gene therapy. However, pre-existing adaptive immune responses...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
25.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The CRISPR-mediated Cas system is the most widely used tool in gene editing and gene therapy for its convenience and efficiency. Delivery of the CRISPR system by adeno-associated viruses (AAVs) is currently the most promising approach to gene therapy. However, pre-existing adaptive immune responses against CRISPR nuclease (PAIR-C) and AAVs has been found in human serum, indicating that immune response is a problem that cannot be ignored, especially for in vivo gene correction. Non-human primates (NHPs) share many genetic and physiological traits with human, and are considered as the bridge for translational medicine. However, whether NHPs have same PAIR-C status with human is still unknown. Here, macaques (rhesus and cynomolgus), including normal housed and CRISPR-SpCas9 or TALENs edited individuals, were used to detect PAIR-C which covered SaCas9, SpCas9, AsCas12a and LbCas12a. Dogs and mice were also detected to expand the range of species. In addition, pre-existing adaptive antibodies to AAV8 and AAV9 were performed against macaques of different ages. The results showed that adaptive immunity was pre-existing in the macaques regardless of Cas proteins and AAVs. These findings indicate that the pre-existing adaptive immune of AAV-delivered CRISPR construction and correction system should be concerned for in vivo experiments. |
---|---|
DOI: | 10.1101/588913 |