不同冠层阻力模型在夏玉米蒸散发计算中的优化应用

【目的】更精确地估算怀来地区夏玉米蒸散量(ET)。【方法】利用怀来站点2013年的气象数据与涡度相关数据,分别采用最小二乘法与蚁群算法优化冠层阻力Jarvis模型(JA模型)和耦合表层阻力模型(CO模型)中的经验参数,使用BP神经网络模型分析冠层阻力(rc)对各气象因子的敏感程度。再利用2014年的气象数据计算ET,并以涡度相关系统实测的ET为标准验证参数优化的结果。【结果】①rc对各影响因子敏感程度从大到小顺序为:Rn>LAI>θ>T>VPD。②使用蚁群算法优化的CO模型拟合rc结果最好(R2=0.89,RMSE=410.90 s/m,d=0.88)。③使用蚁群算法优...

Full description

Saved in:
Bibliographic Details
Published inGuanʻgai paishui xuebao Vol. 40; no. 6; pp. 28 - 35
Main Authors LIN Xinbei, ZHOU, Gang, ZHENG Zetao, ZHAO, Lu, LIANG, Chuan
Format Journal Article
LanguageChinese
English
Published Xinxiang City Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 01.06.2021
四川大学,成都 610065%四川大学,成都 610065
南方丘区节水农业研究四川省重点实验室,成都 610066
Subjects
Online AccessGet full text
ISSN1672-3317
DOI10.13522/j.cnki.ggps.2020450

Cover

Loading…
Abstract 【目的】更精确地估算怀来地区夏玉米蒸散量(ET)。【方法】利用怀来站点2013年的气象数据与涡度相关数据,分别采用最小二乘法与蚁群算法优化冠层阻力Jarvis模型(JA模型)和耦合表层阻力模型(CO模型)中的经验参数,使用BP神经网络模型分析冠层阻力(rc)对各气象因子的敏感程度。再利用2014年的气象数据计算ET,并以涡度相关系统实测的ET为标准验证参数优化的结果。【结果】①rc对各影响因子敏感程度从大到小顺序为:Rn>LAI>θ>T>VPD。②使用蚁群算法优化的CO模型拟合rc结果最好(R2=0.89,RMSE=410.90 s/m,d=0.88)。③使用蚁群算法优化后的CO模型模拟ET精度最高(R2=0.72,RMSE=1.07 mm,d=0.75)。【结论】Rn和LAI是影响夏玉米rc的主要因素,使用蚁群算法优化CO模型中的参数,可以获得精度最高的rc拟合结果和ET估计值,可为夏玉米精量用水提供理论依据。
AbstractList S161.4; [目的]更精确地估算怀来地区夏玉米蒸散量(ET).[方法]利用怀来站点2013年的气象数据与涡度相关数据,分别采用最小二乘法与蚁群算法优化冠层阻力Jarvis模型(JA模型)和耦合表层阻力模型(CO模型)中的经验参数,使用BP神经网络模型分析冠层阻力(rc)对各气象因子的敏感程度.再利用2014年的气象数据计算ET,并以涡度相关系统实测的ET为标准验证参数优化的结果.[结果]①r c对各影响因子敏感程度从大到小顺序为:Rn>LAI>θ>T>VPD.②使用蚁群算法优化的CO模型拟合rc结果最好(R2=0.89,RMSE=410.90 s/m,d=0.88).③使用蚁群算法优化后的CO模型模拟ET精度最高(R2=0.72,RMSE=1.07 mm,d=0.75).[结论]Rn和LAI是影响夏玉米rc的主要因素,使用蚁群算法优化CO模型中的参数,可以获得精度最高的r c拟合结果和ET估计值,可为夏玉米精量用水提供理论依据.
【目的】更精确地估算怀来地区夏玉米蒸散量(ET)。【方法】利用怀来站点2013年的气象数据与涡度相关数据,分别采用最小二乘法与蚁群算法优化冠层阻力Jarvis模型(JA模型)和耦合表层阻力模型(CO模型)中的经验参数,使用BP神经网络模型分析冠层阻力(rc)对各气象因子的敏感程度。再利用2014年的气象数据计算ET,并以涡度相关系统实测的ET为标准验证参数优化的结果。【结果】①rc对各影响因子敏感程度从大到小顺序为:Rn>LAI>θ>T>VPD。②使用蚁群算法优化的CO模型拟合rc结果最好(R2=0.89,RMSE=410.90 s/m,d=0.88)。③使用蚁群算法优化后的CO模型模拟ET精度最高(R2=0.72,RMSE=1.07 mm,d=0.75)。【结论】Rn和LAI是影响夏玉米rc的主要因素,使用蚁群算法优化CO模型中的参数,可以获得精度最高的rc拟合结果和ET估计值,可为夏玉米精量用水提供理论依据。
Author LIN Xinbei
LIANG, Chuan
ZHOU, Gang
ZHENG Zetao
ZHAO, Lu
AuthorAffiliation 四川大学,成都 610065%四川大学,成都 610065;南方丘区节水农业研究四川省重点实验室,成都 610066
AuthorAffiliation_xml – name: 四川大学,成都 610065%四川大学,成都 610065;南方丘区节水农业研究四川省重点实验室,成都 610066
Author_FL LIN Xinbei
ZHENG Zetao
LIANG Chuan
ZHAO Lu
ZHOU Gang
Author_FL_xml – sequence: 1
  fullname: LIN Xinbei
– sequence: 2
  fullname: ZHOU Gang
– sequence: 3
  fullname: ZHENG Zetao
– sequence: 4
  fullname: ZHAO Lu
– sequence: 5
  fullname: LIANG Chuan
Author_xml – sequence: 1
  fullname: LIN Xinbei
– sequence: 2
  givenname: Gang
  surname: ZHOU
  fullname: ZHOU, Gang
– sequence: 3
  fullname: ZHENG Zetao
– sequence: 4
  givenname: Lu
  surname: ZHAO
  fullname: ZHAO, Lu
– sequence: 5
  givenname: Chuan
  surname: LIANG
  fullname: LIANG, Chuan
BookMark eNpFj01LAlEYhe_CIDP_QbtoOdN7v-Y6yxD7AKFNrWXGeUeyGM1J2kcElWaFlVREUgs3CdJGqp_jdexfNGEQZ3E2D-fwzJFEUAmQkAUKJuWSseWyWQx2d8xSqRqaDBgICQmSpJZiBudUzZJ0GJYBgElQ0uZJkhsNm_qyoU-e9eDou_Opzx7Gva5-OtePPf3aii5Oo8H75Ho4vnnRratJvxv170bDt-j-ePTV0Y1b_dGO2r15MuM7eyGm_zpFtldzW9l1I7-5tpFdyRtVyjLSQK9IkSP10YrjCXSl5fsoqG0xJXwuPOm5DggUHrooQfgKKaiidDMCEWyeIkvT3UMn8J2gVChX6rUgfiz8GsfCFCwAGXOLU65aq-zXMTz4BznYGcYUB85_AGYhdLc
ClassificationCodes S161.4
ContentType Journal Article
Copyright Copyright Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 2021
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 2021
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 3V.
7X2
7XB
8FE
8FH
8FK
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13522/j.cnki.ggps.2020450
DatabaseName ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Agricultural Science Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Optimizing the Canopy Resistance Models to Calculate Evapotranspiration from Summer Maize Fields
EndPage 35
ExternalDocumentID ggps202106005
GrantInformation_xml – fundername: (国家重点研发计划项目); (国家自然科学基金面上项目)
  funderid: (国家重点研发计划项目); (国家自然科学基金面上项目)
GroupedDBID 3V.
5XA
5XE
7X2
7XB
8FE
8FH
8FK
ABJNI
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
CW9
DWQXO
GNUQQ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
TGD
U1G
U5N
2B.
4A8
92G
92I
93N
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-p1285-edc1e3e1fe6e6ed4eb56ffe4196274f34d5dba04e4debe504f7e107c5b84ee093
IEDL.DBID BENPR
ISSN 1672-3317
IngestDate Thu May 29 03:56:07 EDT 2025
Sat Aug 23 12:59:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords 蒸散量
冠层阻力
参数优化
敏感度
模型
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p1285-edc1e3e1fe6e6ed4eb56ffe4196274f34d5dba04e4debe504f7e107c5b84ee093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3098227303
PQPubID 6843760
PageCount 8
ParticipantIDs wanfang_journals_ggps202106005
proquest_journals_3098227303
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Xinxiang City
PublicationPlace_xml – name: Xinxiang City
PublicationTitle Guanʻgai paishui xuebao
PublicationTitle_FL Journal of Irrigation and Drainage
PublicationYear 2021
Publisher Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
四川大学,成都 610065%四川大学,成都 610065
南方丘区节水农业研究四川省重点实验室,成都 610066
Publisher_xml – name: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
– name: 四川大学,成都 610065%四川大学,成都 610065
– name: 南方丘区节水农业研究四川省重点实验室,成都 610066
SSID ssj0002507593
ssib002264380
ssib001101356
ssib051374040
ssib046786310
ssib006567438
Score 2.2918253
Snippet ...
S161.4;...
SourceID wanfang
proquest
SourceType Aggregation Database
StartPage 28
SubjectTerms Ant colony optimization
Back propagation networks
Calibration
Canopies
Corn
Covariance
Evapotranspiration
Meteorological data
Neural networks
Radiation
Radiation measurement
Sensitivity analysis
Summer
Surface resistance
Vortices
Weather stations
Wind measurement
Wind speed
Title 不同冠层阻力模型在夏玉米蒸散发计算中的优化应用
URI https://www.proquest.com/docview/3098227303
https://d.wanfangdata.com.cn/periodical/ggps202106005
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aEbyIomJ94cHr6q6b7OMkKi0iKCIWeivZTVJUWKtVvIsIan1SH6iIoodeFIqXov6cxtV_YdKmVi-SY5JDZoaZbybJNwAMiSxD4BDEBHKziAY9RDQHC4X4tqT_sg3oO_I38sysNZWA00mUVAW3rHpWWfOJFUdNVnxZIx8xdck0J-zRHMusarJrlLxdVS00GkGTcMGOsPOmidjs3PxPlUUEeLvKvGtY9qhmimip_s9J4DGyNOwHy4vD6XRGMndLZnb9D9Js3sQBw0H6V8iJt4FWhRUHx6vKbQcNNOgAsXLpgB_n-M4dL259Xb7xveuPwj2_3ec3Bf54FB7uhsWXz9PSx9kDPzr5fL4Pny_Kpafwarv8fslz5_w1H-YLnSARjy1MTmmqF4KWEQdDGiW-QU1qMGqJQSD1kMUYhUaleQ4zIUHEwzqkkAi1IB0ym4rMzkeeAynVXbMLRIKVgHaDQaYzX6x3kYMJxNh0HeaZCBs6dX3LQjgK-moSSCmDzqbq4o-CASWV-qwU4KjMHgV8Qj3_7-8FLXJp9blVH4isr23QfhHY170Bpb1v1ZO6Ng
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQAfYygO0Q0zRgy80sRdckyTRF1yIRGCHJ5qDjv8wNTZItQLuRff3MPEJNvCJMI5gY1sH2woCWVcLKRHBBnZKfDBoj1zc2AJ00B0yPxvYFhbqgW6NAs6uwKzQgycI7tbIc2GUrtvV0AcavqpGRm2uIs4cu9FYB3QJgWWyqm5qSbJhqnGqYlmoGhCkmqUmmZmlpqSaG4Gto0oxNUkxTkhINTFJNUoAeNDUwSTNPBfaRkk2TLExSU8GHLwGLfFYT0I5WFgZWJ1e_gCD4qA6wQWEOOenX0MzcSNcYWDtD9-uBGjr6WXrJedmZeunpBaCTwkEnwRugtGzZyxPz0hLz0pGqODdBBn5o21TBEZKYhBiYUvNEGFyf7Oh9OqHnaduCpxubXs7Y_bRr9rMVC5_O6346Z8XTJf3P-zqfb9z8YtKOZ1MXP-2f-GLdwufrpj_Zsfb5rJYne2Y87Zn2dNeU51NWiDKE0iSUxBhY8vLzUiUYFNIM0pKB6i1NLRJTTBITjS0t0pKMTRMNDVItk83MTBMlGWRgIRAPzUDF8YjolmSQg4YKQhYUgEag3iqwuWYqhV-_PAOnR4ivT7yPp5-3NAMXSBtkqZcMA0tJUWmqLLBRUZIkB41JBYYEWiceAO85-TU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%8D%E5%90%8C%E5%86%A0%E5%B1%82%E9%98%BB%E5%8A%9B%E6%A8%A1%E5%9E%8B%E5%9C%A8%E5%A4%8F%E7%8E%89%E7%B1%B3%E8%92%B8%E6%95%A3%E5%8F%91%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%9A%84%E4%BC%98%E5%8C%96%E5%BA%94%E7%94%A8&rft.jtitle=%E7%81%8C%E6%BA%89%E6%8E%92%E6%B0%B4%E5%AD%A6%E6%8A%A5&rft.au=%E6%9E%97%E9%A6%A8%E8%B4%9D&rft.au=%E5%91%A8%E5%B2%97&rft.au=%E9%83%91%E6%B3%BD%E6%B6%9B&rft.au=%E8%B5%B5%E7%92%90&rft.date=2021-06-01&rft.pub=%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%2C%E6%88%90%E9%83%BD+610065%25%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%2C%E6%88%90%E9%83%BD+610065&rft.issn=1672-3317&rft.volume=40&rft.issue=6&rft.spage=28&rft.epage=35&rft_id=info:doi/10.13522%2Fj.cnki.ggps.2020450&rft.externalDocID=ggps202106005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fggps%2Fggps.jpg