不同冠层阻力模型在夏玉米蒸散发计算中的优化应用
【目的】更精确地估算怀来地区夏玉米蒸散量(ET)。【方法】利用怀来站点2013年的气象数据与涡度相关数据,分别采用最小二乘法与蚁群算法优化冠层阻力Jarvis模型(JA模型)和耦合表层阻力模型(CO模型)中的经验参数,使用BP神经网络模型分析冠层阻力(rc)对各气象因子的敏感程度。再利用2014年的气象数据计算ET,并以涡度相关系统实测的ET为标准验证参数优化的结果。【结果】①rc对各影响因子敏感程度从大到小顺序为:Rn>LAI>θ>T>VPD。②使用蚁群算法优化的CO模型拟合rc结果最好(R2=0.89,RMSE=410.90 s/m,d=0.88)。③使用蚁群算法优...
Saved in:
Published in | Guanʻgai paishui xuebao Vol. 40; no. 6; pp. 28 - 35 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese English |
Published |
Xinxiang City
Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
01.06.2021
四川大学,成都 610065%四川大学,成都 610065 南方丘区节水农业研究四川省重点实验室,成都 610066 |
Subjects | |
Online Access | Get full text |
ISSN | 1672-3317 |
DOI | 10.13522/j.cnki.ggps.2020450 |
Cover
Loading…
Abstract | 【目的】更精确地估算怀来地区夏玉米蒸散量(ET)。【方法】利用怀来站点2013年的气象数据与涡度相关数据,分别采用最小二乘法与蚁群算法优化冠层阻力Jarvis模型(JA模型)和耦合表层阻力模型(CO模型)中的经验参数,使用BP神经网络模型分析冠层阻力(rc)对各气象因子的敏感程度。再利用2014年的气象数据计算ET,并以涡度相关系统实测的ET为标准验证参数优化的结果。【结果】①rc对各影响因子敏感程度从大到小顺序为:Rn>LAI>θ>T>VPD。②使用蚁群算法优化的CO模型拟合rc结果最好(R2=0.89,RMSE=410.90 s/m,d=0.88)。③使用蚁群算法优化后的CO模型模拟ET精度最高(R2=0.72,RMSE=1.07 mm,d=0.75)。【结论】Rn和LAI是影响夏玉米rc的主要因素,使用蚁群算法优化CO模型中的参数,可以获得精度最高的rc拟合结果和ET估计值,可为夏玉米精量用水提供理论依据。 |
---|---|
AbstractList | S161.4; [目的]更精确地估算怀来地区夏玉米蒸散量(ET).[方法]利用怀来站点2013年的气象数据与涡度相关数据,分别采用最小二乘法与蚁群算法优化冠层阻力Jarvis模型(JA模型)和耦合表层阻力模型(CO模型)中的经验参数,使用BP神经网络模型分析冠层阻力(rc)对各气象因子的敏感程度.再利用2014年的气象数据计算ET,并以涡度相关系统实测的ET为标准验证参数优化的结果.[结果]①r c对各影响因子敏感程度从大到小顺序为:Rn>LAI>θ>T>VPD.②使用蚁群算法优化的CO模型拟合rc结果最好(R2=0.89,RMSE=410.90 s/m,d=0.88).③使用蚁群算法优化后的CO模型模拟ET精度最高(R2=0.72,RMSE=1.07 mm,d=0.75).[结论]Rn和LAI是影响夏玉米rc的主要因素,使用蚁群算法优化CO模型中的参数,可以获得精度最高的r c拟合结果和ET估计值,可为夏玉米精量用水提供理论依据. 【目的】更精确地估算怀来地区夏玉米蒸散量(ET)。【方法】利用怀来站点2013年的气象数据与涡度相关数据,分别采用最小二乘法与蚁群算法优化冠层阻力Jarvis模型(JA模型)和耦合表层阻力模型(CO模型)中的经验参数,使用BP神经网络模型分析冠层阻力(rc)对各气象因子的敏感程度。再利用2014年的气象数据计算ET,并以涡度相关系统实测的ET为标准验证参数优化的结果。【结果】①rc对各影响因子敏感程度从大到小顺序为:Rn>LAI>θ>T>VPD。②使用蚁群算法优化的CO模型拟合rc结果最好(R2=0.89,RMSE=410.90 s/m,d=0.88)。③使用蚁群算法优化后的CO模型模拟ET精度最高(R2=0.72,RMSE=1.07 mm,d=0.75)。【结论】Rn和LAI是影响夏玉米rc的主要因素,使用蚁群算法优化CO模型中的参数,可以获得精度最高的rc拟合结果和ET估计值,可为夏玉米精量用水提供理论依据。 |
Author | LIN Xinbei LIANG, Chuan ZHOU, Gang ZHENG Zetao ZHAO, Lu |
AuthorAffiliation | 四川大学,成都 610065%四川大学,成都 610065;南方丘区节水农业研究四川省重点实验室,成都 610066 |
AuthorAffiliation_xml | – name: 四川大学,成都 610065%四川大学,成都 610065;南方丘区节水农业研究四川省重点实验室,成都 610066 |
Author_FL | LIN Xinbei ZHENG Zetao LIANG Chuan ZHAO Lu ZHOU Gang |
Author_FL_xml | – sequence: 1 fullname: LIN Xinbei – sequence: 2 fullname: ZHOU Gang – sequence: 3 fullname: ZHENG Zetao – sequence: 4 fullname: ZHAO Lu – sequence: 5 fullname: LIANG Chuan |
Author_xml | – sequence: 1 fullname: LIN Xinbei – sequence: 2 givenname: Gang surname: ZHOU fullname: ZHOU, Gang – sequence: 3 fullname: ZHENG Zetao – sequence: 4 givenname: Lu surname: ZHAO fullname: ZHAO, Lu – sequence: 5 givenname: Chuan surname: LIANG fullname: LIANG, Chuan |
BookMark | eNpFj01LAlEYhe_CIDP_QbtoOdN7v-Y6yxD7AKFNrWXGeUeyGM1J2kcElWaFlVREUgs3CdJGqp_jdexfNGEQZ3E2D-fwzJFEUAmQkAUKJuWSseWyWQx2d8xSqRqaDBgICQmSpJZiBudUzZJ0GJYBgElQ0uZJkhsNm_qyoU-e9eDou_Opzx7Gva5-OtePPf3aii5Oo8H75Ho4vnnRratJvxv170bDt-j-ePTV0Y1b_dGO2r15MuM7eyGm_zpFtldzW9l1I7-5tpFdyRtVyjLSQK9IkSP10YrjCXSl5fsoqG0xJXwuPOm5DggUHrooQfgKKaiidDMCEWyeIkvT3UMn8J2gVChX6rUgfiz8GsfCFCwAGXOLU65aq-zXMTz4BznYGcYUB85_AGYhdLc |
ClassificationCodes | S161.4 |
ContentType | Journal Article |
Copyright | Copyright Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 2021 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 2021 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 3V. 7X2 7XB 8FE 8FH 8FK AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ M0K M2O MBDVC PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.13522/j.cnki.ggps.2020450 |
DatabaseName | ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Agricultural Science Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Optimizing the Canopy Resistance Models to Calculate Evapotranspiration from Summer Maize Fields |
EndPage | 35 |
ExternalDocumentID | ggps202106005 |
GrantInformation_xml | – fundername: (国家重点研发计划项目); (国家自然科学基金面上项目) funderid: (国家重点研发计划项目); (国家自然科学基金面上项目) |
GroupedDBID | 3V. 5XA 5XE 7X2 7XB 8FE 8FH 8FK ABJNI ACGFS AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BENPR BHPHI CCPQU CW9 DWQXO GNUQQ GUQSH HCIFZ M0K M2O MBDVC PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U TGD U1G U5N 2B. 4A8 92G 92I 93N GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-p1285-edc1e3e1fe6e6ed4eb56ffe4196274f34d5dba04e4debe504f7e107c5b84ee093 |
IEDL.DBID | BENPR |
ISSN | 1672-3317 |
IngestDate | Thu May 29 03:56:07 EDT 2025 Sat Aug 23 12:59:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Keywords | 蒸散量 冠层阻力 参数优化 敏感度 模型 |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p1285-edc1e3e1fe6e6ed4eb56ffe4196274f34d5dba04e4debe504f7e107c5b84ee093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3098227303 |
PQPubID | 6843760 |
PageCount | 8 |
ParticipantIDs | wanfang_journals_ggps202106005 proquest_journals_3098227303 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Xinxiang City |
PublicationPlace_xml | – name: Xinxiang City |
PublicationTitle | Guanʻgai paishui xuebao |
PublicationTitle_FL | Journal of Irrigation and Drainage |
PublicationYear | 2021 |
Publisher | Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 四川大学,成都 610065%四川大学,成都 610065 南方丘区节水农业研究四川省重点实验室,成都 610066 |
Publisher_xml | – name: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage – name: 四川大学,成都 610065%四川大学,成都 610065 – name: 南方丘区节水农业研究四川省重点实验室,成都 610066 |
SSID | ssj0002507593 ssib002264380 ssib001101356 ssib051374040 ssib046786310 ssib006567438 |
Score | 2.2918253 |
Snippet | ... S161.4;... |
SourceID | wanfang proquest |
SourceType | Aggregation Database |
StartPage | 28 |
SubjectTerms | Ant colony optimization Back propagation networks Calibration Canopies Corn Covariance Evapotranspiration Meteorological data Neural networks Radiation Radiation measurement Sensitivity analysis Summer Surface resistance Vortices Weather stations Wind measurement Wind speed |
Title | 不同冠层阻力模型在夏玉米蒸散发计算中的优化应用 |
URI | https://www.proquest.com/docview/3098227303 https://d.wanfangdata.com.cn/periodical/ggps202106005 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aEbyIomJ94cHr6q6b7OMkKi0iKCIWeivZTVJUWKtVvIsIan1SH6iIoodeFIqXov6cxtV_YdKmVi-SY5JDZoaZbybJNwAMiSxD4BDEBHKziAY9RDQHC4X4tqT_sg3oO_I38sysNZWA00mUVAW3rHpWWfOJFUdNVnxZIx8xdck0J-zRHMusarJrlLxdVS00GkGTcMGOsPOmidjs3PxPlUUEeLvKvGtY9qhmimip_s9J4DGyNOwHy4vD6XRGMndLZnb9D9Js3sQBw0H6V8iJt4FWhRUHx6vKbQcNNOgAsXLpgB_n-M4dL259Xb7xveuPwj2_3ec3Bf54FB7uhsWXz9PSx9kDPzr5fL4Pny_Kpafwarv8fslz5_w1H-YLnSARjy1MTmmqF4KWEQdDGiW-QU1qMGqJQSD1kMUYhUaleQ4zIUHEwzqkkAi1IB0ym4rMzkeeAynVXbMLRIKVgHaDQaYzX6x3kYMJxNh0HeaZCBs6dX3LQjgK-moSSCmDzqbq4o-CASWV-qwU4KjMHgV8Qj3_7-8FLXJp9blVH4isr23QfhHY170Bpb1v1ZO6Ng |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQAfYygO0Q0zRgy80sRdckyTRF1yIRGCHJ5qDjv8wNTZItQLuRff3MPEJNvCJMI5gY1sH2woCWVcLKRHBBnZKfDBoj1zc2AJ00B0yPxvYFhbqgW6NAs6uwKzQgycI7tbIc2GUrtvV0AcavqpGRm2uIs4cu9FYB3QJgWWyqm5qSbJhqnGqYlmoGhCkmqUmmZmlpqSaG4Gto0oxNUkxTkhINTFJNUoAeNDUwSTNPBfaRkk2TLExSU8GHLwGLfFYT0I5WFgZWJ1e_gCD4qA6wQWEOOenX0MzcSNcYWDtD9-uBGjr6WXrJedmZeunpBaCTwkEnwRugtGzZyxPz0hLz0pGqODdBBn5o21TBEZKYhBiYUvNEGFyf7Oh9OqHnaduCpxubXs7Y_bRr9rMVC5_O6346Z8XTJf3P-zqfb9z8YtKOZ1MXP-2f-GLdwufrpj_Zsfb5rJYne2Y87Zn2dNeU51NWiDKE0iSUxBhY8vLzUiUYFNIM0pKB6i1NLRJTTBITjS0t0pKMTRMNDVItk83MTBMlGWRgIRAPzUDF8YjolmSQg4YKQhYUgEag3iqwuWYqhV-_PAOnR4ivT7yPp5-3NAMXSBtkqZcMA0tJUWmqLLBRUZIkB41JBYYEWiceAO85-TU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%8D%E5%90%8C%E5%86%A0%E5%B1%82%E9%98%BB%E5%8A%9B%E6%A8%A1%E5%9E%8B%E5%9C%A8%E5%A4%8F%E7%8E%89%E7%B1%B3%E8%92%B8%E6%95%A3%E5%8F%91%E8%AE%A1%E7%AE%97%E4%B8%AD%E7%9A%84%E4%BC%98%E5%8C%96%E5%BA%94%E7%94%A8&rft.jtitle=%E7%81%8C%E6%BA%89%E6%8E%92%E6%B0%B4%E5%AD%A6%E6%8A%A5&rft.au=%E6%9E%97%E9%A6%A8%E8%B4%9D&rft.au=%E5%91%A8%E5%B2%97&rft.au=%E9%83%91%E6%B3%BD%E6%B6%9B&rft.au=%E8%B5%B5%E7%92%90&rft.date=2021-06-01&rft.pub=%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%2C%E6%88%90%E9%83%BD+610065%25%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%2C%E6%88%90%E9%83%BD+610065&rft.issn=1672-3317&rft.volume=40&rft.issue=6&rft.spage=28&rft.epage=35&rft_id=info:doi/10.13522%2Fj.cnki.ggps.2020450&rft.externalDocID=ggps202106005 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fggps%2Fggps.jpg |