不同冠层阻力模型在夏玉米蒸散发计算中的优化应用
【目的】更精确地估算怀来地区夏玉米蒸散量(ET)。【方法】利用怀来站点2013年的气象数据与涡度相关数据,分别采用最小二乘法与蚁群算法优化冠层阻力Jarvis模型(JA模型)和耦合表层阻力模型(CO模型)中的经验参数,使用BP神经网络模型分析冠层阻力(rc)对各气象因子的敏感程度。再利用2014年的气象数据计算ET,并以涡度相关系统实测的ET为标准验证参数优化的结果。【结果】①rc对各影响因子敏感程度从大到小顺序为:Rn>LAI>θ>T>VPD。②使用蚁群算法优化的CO模型拟合rc结果最好(R2=0.89,RMSE=410.90 s/m,d=0.88)。③使用蚁群算法优...
Saved in:
Published in | Guanʻgai paishui xuebao Vol. 40; no. 6; pp. 28 - 35 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese English |
Published |
Xinxiang City
Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage
01.06.2021
四川大学,成都 610065%四川大学,成都 610065 南方丘区节水农业研究四川省重点实验室,成都 610066 |
Subjects | |
Online Access | Get full text |
ISSN | 1672-3317 |
DOI | 10.13522/j.cnki.ggps.2020450 |
Cover
Loading…
Summary: | 【目的】更精确地估算怀来地区夏玉米蒸散量(ET)。【方法】利用怀来站点2013年的气象数据与涡度相关数据,分别采用最小二乘法与蚁群算法优化冠层阻力Jarvis模型(JA模型)和耦合表层阻力模型(CO模型)中的经验参数,使用BP神经网络模型分析冠层阻力(rc)对各气象因子的敏感程度。再利用2014年的气象数据计算ET,并以涡度相关系统实测的ET为标准验证参数优化的结果。【结果】①rc对各影响因子敏感程度从大到小顺序为:Rn>LAI>θ>T>VPD。②使用蚁群算法优化的CO模型拟合rc结果最好(R2=0.89,RMSE=410.90 s/m,d=0.88)。③使用蚁群算法优化后的CO模型模拟ET精度最高(R2=0.72,RMSE=1.07 mm,d=0.75)。【结论】Rn和LAI是影响夏玉米rc的主要因素,使用蚁群算法优化CO模型中的参数,可以获得精度最高的rc拟合结果和ET估计值,可为夏玉米精量用水提供理论依据。 |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1672-3317 |
DOI: | 10.13522/j.cnki.ggps.2020450 |