联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测
随着传感器技术的飞速发展,基于多源光学遥感影像的变化检测已成为遥感领域中的研究热点。由于传感器成像差异,同一景象在多源光学遥感影像中通常呈现出不同的表现形式,因此面临着更加突出的“伪变化”问题。为此,本文提出了一种联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测方法。该方法首先提出了一种多尺度特征提取差分(multi-scale feature extraction difference,MFED)模块,以增强模型对“伪变化”的识别能力;在此基础上,利用UNet++网络输出的多尺度特征对变化区域进行多角度精细刻画,并提出了一种自适应证据置信度指标(adaptive evidenc...
Saved in:
Published in | Ce hui xue bao Vol. 52; no. 2; pp. 283 - 296 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese English |
Published |
Beijing
Surveying and Mapping Press
20.02.2023
青岛海洋科学技术国家实验室区域海洋学与数值模拟实验室,青岛266237 南京信息工程大学电子与信息工程学院,南京210044%南京信息工程大学电子与信息工程学院,南京210044 南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京210044%南京信息工程大学遥感与测绘工程学院,南京210044 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-1595 1001-1595 |
DOI | 10.11947/j.AGCS.2023.20220202 |
Cover
Summary: | 随着传感器技术的飞速发展,基于多源光学遥感影像的变化检测已成为遥感领域中的研究热点。由于传感器成像差异,同一景象在多源光学遥感影像中通常呈现出不同的表现形式,因此面临着更加突出的“伪变化”问题。为此,本文提出了一种联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测方法。该方法首先提出了一种多尺度特征提取差分(multi-scale feature extraction difference,MFED)模块,以增强模型对“伪变化”的识别能力;在此基础上,利用UNet++网络输出的多尺度特征对变化区域进行多角度精细刻画,并提出了一种自适应证据置信度指标(adaptive evidence credibility indicators,AECI);最后结合影像分割与Dempster-Shafer(DS)理论设计了加权DS证据融合策略(weighted dempster shafer evidence fusion,WDSEF),从而实现了深度网络像素级输出至对象级结果的映射。通过对不同地区的4组高分多源光学影像数据集进行试验,并与多种先进的深度学习方法进行对比分析,结果表明:在不同空间分辨率和时相差异条件下,本文方法的总体精度(overall accuracy,OA)和F1 score分别可达91.92%和63.31%以上,在目视分析和定量评价均显著优于对比方法。 |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1001-1595 1001-1595 |
DOI: | 10.11947/j.AGCS.2023.20220202 |