k-Means NANI: an improved clustering algorithm for Molecular Dynamics simulations

One of the key challenges of -means clustering is the seed selection or the initial centroid estimation since the clustering result depends heavily on this choice. Alternatives such as -means++ have mitigated this limitation by estimating the centroids using an empirical probability distribution. Ho...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Chen, Lexin, Roe, Daniel R, Kochert, Matthew, Simmerling, Carlos, Miranda-Quintana, Ramón Alain
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 08.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One of the key challenges of -means clustering is the seed selection or the initial centroid estimation since the clustering result depends heavily on this choice. Alternatives such as -means++ have mitigated this limitation by estimating the centroids using an empirical probability distribution. However, with high-dimensional and complex datasets such as those obtained from molecular simulation, -means++ fails to partition the data in an optimal manner. Furthermore, stochastic elements in all flavors of -means++ will lead to a lack of reproducibility. -means -Ary Natural Initiation (NANI) is presented as an alternative to tackle this challenge by using efficient -ary comparisons to both identify high-density regions in the data and select a diverse set of initial conformations. Centroids generated from NANI are not only representative of the data and different from one another, helping -means to partition the data accurately, but also deterministic, providing consistent cluster populations across replicates. From peptide and protein folding molecular simulations, NANI was able to create compact and well-separated clusters as well as accurately find the metastable states that agree with the literature. NANI can cluster diverse datasets and be used as a standalone tool or as part of our MDANCE clustering package.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Working Paper/Pre-Print-1
content type line 23
ISSN:2692-8205
2692-8205
DOI:10.1101/2024.03.07.583975