Controlled Interconversion of Superposed-Bistriangle, Octahedron, and Cuboctahedron Cages Constructed Using a Single, Terpyridinyl-Based Polyligand and Zn(2.)
Metallomacromolecular architectural conversion is expanded by the characterization of three different structures. A quantitative, single-step, self-assembly of a shape-persistent monomer, containing a flexible crown ether moiety, gives an initial Archimedean-based cuboctahedron that has been unequiv...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 38; pp. 12344 - 12347 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
28.09.2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | Metallomacromolecular architectural conversion is expanded by the characterization of three different structures. A quantitative, single-step, self-assembly of a shape-persistent monomer, containing a flexible crown ether moiety, gives an initial Archimedean-based cuboctahedron that has been unequivocally characterized by 1D and 2D NMR spectroscopy, mass spectrometry, and collision cross section analysis. Both dilution and exchange of counterions, transforms this cuboctahedron into two identical octahedrons, which upon further dilution convert into four, superposed, bistrianglar complexes; increasing the concentration reverses the process. Ion binding studies using the cuboctahedral cage were undertaken. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1520-5126 |
DOI: | 10.1021/jacs.6b07969 |