Influence of tumour size on the efficacy of targeted alpha therapy with (213)Bi-[DOTA(0),Tyr(3)]-octreotate

Targeted alpha therapy has been postulated to have great potential for the treatment of small clusters of tumour cells as well as small metastases. (213)Bismuth, an α-emitter with a half-life of 46 min, has shown to be effective in preclinical as well as in clinical applications. In this study, we e...

Full description

Saved in:
Bibliographic Details
Published inEJNMMI research Vol. 6; no. 1; p. 6
Main Authors Chan, Ho Sze, Konijnenberg, Mark W, de Blois, Erik, Koelewijn, Stuart, Baum, Richard P, Morgenstern, Alfred, Bruchertseifer, Frank, Breeman, Wouter A, de Jong, Marion
Format Journal Article
LanguageEnglish
Published Germany 01.12.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:Targeted alpha therapy has been postulated to have great potential for the treatment of small clusters of tumour cells as well as small metastases. (213)Bismuth, an α-emitter with a half-life of 46 min, has shown to be effective in preclinical as well as in clinical applications. In this study, we evaluated whether (213)Bi-[DOTA(0), Tyr(3)]-octreotate ((213)Bi-DOTATATE), a (213)Bi-labelled somatostatin analogue with high affinity for somatostatin receptor subtype 2 (SSTR2), is suitable for the treatment of larger neuroendocrine tumours overexpressing SSTR2 in comparison to its effectiveness for smaller tumours. We performed a preclinical targeted radionuclide therapy study with (213)Bi-DOTATATE in animals bearing tumours of different sizes (50 and 200 mm(3)) using two tumour models: H69 (human small cell lung carcinoma) and CA20948 (rat pancreatic tumour). Pharmacokinetics was determined for calculation of dosimetry in organs and tumours. H69- or CA20948-xenografted mice with tumour volumes of approximately 120 mm(3) were euthanized at 10, 30, 60 and 120 min post injection of a single dose of (213)Bi-DOTATATE (1.5-4.8 MBq). To investigate the therapeutic efficacy of (213)Bi-DOTATATE, xenografted H69 and CA20948 tumour-bearing mice with tumour sizes of 50 and 200 mm(3) were administered daily with a therapeutic dose of (213)Bi-DOTATATE (0.3 nmol, 2-4 MBq) for three consecutive days. The animals were followed for 90 days after treatment. At day 90, mice were injected with 25 MBq (99m)Tc-DMSA and imaged by SPECT/CT to investigate possible renal dysfunction due to (213)Bi-DOTATATE treatment. Higher tumour uptakes were found in CA20948 tumour-bearing animals compared to those in H69 tumour-bearing mice with the highest tumour uptake of 19.6 ± 6.6 %IA/g in CA20948 tumour-bearing animals, while for H69 tumour-bearing mice, the highest tumour uptake was found to be 9.8 ± 2.4 %IA/g. Nevertheless, as the anti-tumour effect was more pronounced in H69 tumour-bearing mice, the survival rate was higher. Furthermore, in the small tumour groups, no regrowth of tumour was found in two H69 tumour-bearing mice and in one of the CA20948 tumour-bearing mice. No renal dysfunction was observed in (213)Bi-DOTATATE-treated mice after the doses were applied. (213)Bi-DOTATATE demonstrated a great therapeutic effect in both small and larger tumour lesions. Higher probability for stable disease was found in animals with small tumours. (213)Bi-DOTATATE was effective in different neuroendocrine (H69 and CA20948) tumour models with overexpression of SSTR2 in mice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2191-219X
2191-219X
DOI:10.1186/s13550-016-0162-2