Global genomic epidemiology of blaGES-5 carbapenemase-associated integrons

Antimicrobial resistance (AMR) gene cassettes comprise an AMR gene flanked by short recombination sites ( attI and attC  or attC and attC ). Integrons are genetic elements able to capture, excise and shuffle these cassettes, providing ‘adaptation on demand’, and can be found on both chromosomes and...

Full description

Saved in:
Bibliographic Details
Published inMicrobial genomics Vol. 10; no. 12
Main Authors Matlock, William, Shaw, Liam P., Stoesser, Nicole
Format Journal Article
LanguageEnglish
Published Microbiology Society 04.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Antimicrobial resistance (AMR) gene cassettes comprise an AMR gene flanked by short recombination sites ( attI and attC  or attC and attC ). Integrons are genetic elements able to capture, excise and shuffle these cassettes, providing ‘adaptation on demand’, and can be found on both chromosomes and plasmids. Understanding the patterns of integron diversity may help to understand the epidemiology of AMR genes. As a case study, we examined the clinical resistance gene bla GES-5 , an integron-associated class A carbapenemase first reported in Greece in 2004 and since observed worldwide, which to our knowledge has not been the subject of a previous global analysis. Using a dataset comprising all de-duplicated NCBI contigs containing bla GES-5 ( n =104), we developed a pangenome graph-based workflow to characterize and cluster the diversity of bla GES-5 -associated integrons. We demonstrate that bla GES-5 -associated integrons on plasmids are different to those on chromosomes. Chromosomal integrons were almost all identified in Pseudomonas aeruginosa ST235, with a consistent gene cassette content and order. We observed instances where insertion sequence IS 110 disrupted attC sites, which might immobilize the gene cassettes and explain the conserved integron structure despite the presence of intI1 integrase promoters, which would typically facilitate capture or excision and rearrangement. The plasmid-associated integrons were more diverse in their gene cassette content and order, which could be an indication of greater integrase activity and ‘shuffling’ of integrons on plasmids.
Bibliography:These authors share senior authorship.
Supplementary material: All supporting data, code and protocols have been provided within the article or through supplementary data files. Five supplementary figures and one supplementary table are available with the online version of this article.
The authors declare no competing interests.
ISSN:2057-5858
DOI:10.1099/mgen.0.001312