Hydrothermal Synthesis and Characterization of Novel Brackebuschite-Type Transition Metal Vanadates: Ba2M(VO4)2(OH), M = V(3+), Mn(3+), and Fe(3+), with Interesting Jahn-Teller and Spin-Liquid Behavior
A new series of transition metal vanadates, namely, Ba2M(VO4)2(OH) (M = V(3+), Mn(3+), and Fe(3+)), was synthesized as large single crystals hydrothermally in 5 M NaOH solution at 580 °C and 1 kbar. This new series of compounds is structurally reminiscent of the brackebuschite mineral type. The stru...
Saved in:
Published in | Inorganic chemistry Vol. 54; no. 14; pp. 7014 - 7020 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
20.07.2015
|
Online Access | Get full text |
Cover
Loading…
Summary: | A new series of transition metal vanadates, namely, Ba2M(VO4)2(OH) (M = V(3+), Mn(3+), and Fe(3+)), was synthesized as large single crystals hydrothermally in 5 M NaOH solution at 580 °C and 1 kbar. This new series of compounds is structurally reminiscent of the brackebuschite mineral type. The structure of Ba2V(VO4)2(OH) is monoclinic in space group P21/m, a = 7.8783(2) Å, b = 6.1369(1) Å, c = 9.1836(2) Å, β = 113.07(3)°, V = 408.51(2) Å(3). The other structures are similar and consist of one-dimensional trans edge-shared distorted octahedral chains running along the b-axis. The vanadate groups bridge across edges of their tetrahedra. Structural analysis of the Ba2Mn(VO4)2(OH) analogue yielded a new understanding of the Jahn-Teller effect in this structure type. Raman and infrared spectra were investigated to observe the fundamental vanadate and hydroxide vibrational modes. Single-crystal temperature-dependent magnetic studies on Ba2V(VO4)2(OH) reveal a broad feature over a wide temperature range with maximum at ∼100 K indicating that an energy gap could exist between the antiferromagnetic singlet ground state and excited triplet states, making it potentially of interest for quantum magnetism studies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1520-510X |
DOI: | 10.1021/acs.inorgchem.5b01037 |