Polyamines interact with hydroxyl radicals in activating Ca(2+) and K(+) transport across the root epidermal plasma membranes
Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca(2+) dynamics by activating a range of nonselective Ca(2+)-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode io...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 157; no. 4; p. 2167 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca(2+) dynamics by activating a range of nonselective Ca(2+)-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K(+) and Ca(2+) fluxes induced by hydroxyl radicals (OH(•)) in pea (Pisum sativum) roots. OH(•), but not hydrogen peroxide, activated a rapid Ca(2+) efflux and a more slowly developing net Ca(2+) influx concurrent with a net K(+) efflux. In isolated protoplasts, OH(•) evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K(+) efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca(2+). Active OH(•)-induced Ca(2+) efflux in roots was suppressed by the PM Ca(2+) pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH(•)-induced ionic currents in root protoplasts and K(+) efflux and Ca(2+) influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH(•)-induced cation fluxes. The net OH(•)-induced Ca(2+) efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH(•)-induced net K(+) efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca(2+) homeostasis by modulating both Ca(2+) influx and efflux transport systems at the root cell PM. |
---|---|
ISSN: | 1532-2548 |
DOI: | 10.1104/pp.111.179671 |