Cell proliferation is associated with enhanced capacitative Ca(2+) entry in human arterial myocytes

Depletion of Ca(2+) stores in the sarcoplasmic reticulum (SR) activates extracellular Ca(2+) influx via capacitative Ca(2+) entry (CCE). Here, CCE levels in proliferating and growth-arrested human pulmonary artery smooth muscle cells (PASMCs) were compared by digital imaging fluorescence microscopy....

Full description

Saved in:
Bibliographic Details
Published inThe American journal of physiology Vol. 277; no. 2; p. C343
Main Author Golovina, V A
Format Journal Article
LanguageEnglish
Published United States 01.08.1999
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Depletion of Ca(2+) stores in the sarcoplasmic reticulum (SR) activates extracellular Ca(2+) influx via capacitative Ca(2+) entry (CCE). Here, CCE levels in proliferating and growth-arrested human pulmonary artery smooth muscle cells (PASMCs) were compared by digital imaging fluorescence microscopy. Resting cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in proliferating PASMCs was twofold higher than that in growth-arrested cells. Cyclopiazonic acid (CPA; 10 microM), which inhibits SR Ca(2+)-ATPase and depletes inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores, transiently increased [Ca(2+)](cyt) in the absence of extracellular Ca(2+). The addition of 1.8 mM Ca(2+) to the extracellular solution in the presence of CPA induced large increases in [Ca(2+)](cyt), indicative of CCE. The CPA-induced SR Ca(2+) release in proliferating PASMCs was twofold higher than that in growth-arrested cells, whereas the transient rise of [Ca(2+)](cyt) due to CCE was fivefold greater in proliferating cells. CCE was insensitive to nifedipine but was significantly inhibited by 50 mM K(+), which reduces the driving force for Ca(2+) influx, and by 0.5 mM Ni(2+), a putative blocker of store-operated Ca(2+) channels. These data show that augmented CCE is associated with proliferation of human PASMCs and may be involved in stimulating and maintaining cell growth.
ISSN:0002-9513
DOI:10.1152/ajpcell.1999.277.2.c343