Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway
The endothelial differentiation gene-6 (Edg-6) was recently identified as an orphan G-protein-coupled receptor. Its predicted amino acid sequence is very close to Edg family of receptor proteins whose ligand is supposed to be lysophosphatidic acid (LPA) or lysosphingolipid such as sphingosine 1-phos...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 268; no. 2; pp. 583 - 589 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
16.02.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The endothelial differentiation gene-6 (Edg-6) was recently identified as an orphan G-protein-coupled receptor. Its predicted amino acid sequence is very close to Edg family of receptor proteins whose ligand is supposed to be lysophosphatidic acid (LPA) or lysosphingolipid such as sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC). Transfection of the Edg-6 into Chinese hamster ovary (CHO) cells and K562 cells resulted in the appearance of high-affinity [(3)H]S1P binding activity. Among lipids employed, S1P and, even though less potent, SPC, displaced the [(3)H]S1P binding, but LPA was inactive. In Edg-6-transfected CHO cells, an increase in cytosolic Ca(2+) concentration in response to S1P or SPC was clearly enhanced without change in the LPA-induced action as compared with the vector-transfected cells. The enhancement of the Ca(2+) response was associated with a significant accumulation of inositol phosphate, reflecting activation of phospholipase C. Similar enhancement of Ca(2+) response to S1P or SPC was also observed in Edg-6-expressing K562 cells. These lipid-induced actions in CHO cells and K562 cells expressing Edg-6 were markedly suppressed by pertussis toxin treatment. We conclude that Edg-6 is one of S1P or lysosphingolipid receptors that couple to phospholipase C-Ca(2+) system through pertussis toxin-sensitive G-proteins. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-291X |
DOI: | 10.1006/bbrc.2000.2162 |