Studies of the chemical selectivity of hapten, reactivity, and skin sensitization potency. 1. Synthesis and studies on the reactivity toward model nucleophiles of the (13)C-labeled skin sensitizers hex-1-ene- and hexane-1,3-sultones

The potent skin sensitizers hex-1-ene- and hexane-1,3-sultone have been synthesized isotopically labeled with (13)C at reactive sites. The reactivity of 2-[(13)C]- and 3-[(13)C]hex-1-ene-1,3-sultones and of 3-[(13)C]hexane-1,3-sultone toward a series of model nucleophiles for protein amino acid resi...

Full description

Saved in:
Bibliographic Details
Published inChemical research in toxicology Vol. 14; no. 1; pp. 110 - 117
Main Authors Meschkat, E, Barratt, M D, Lepoittevin, J
Format Journal Article
LanguageEnglish
Published United States 01.01.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The potent skin sensitizers hex-1-ene- and hexane-1,3-sultone have been synthesized isotopically labeled with (13)C at reactive sites. The reactivity of 2-[(13)C]- and 3-[(13)C]hex-1-ene-1,3-sultones and of 3-[(13)C]hexane-1,3-sultone toward a series of model nucleophiles for protein amino acid residues, i.e., butylamine, diethylamine, imidazole, propanethiol, and phenol, was followed by (13)C NMR spectroscopy. The reactivity in water of hex-1-ene-1,3-sultone toward model nucleophiles follows the hard and soft acid and base theory with the hard nucleophiles (primary and secondary amine and phenate) mainly reacting at position 3 by S(N) substitution, and the soft nucleophiles (thiolate and imidazole) mainly reacting at position 2 by a Michael addition reaction. Hexane-1,3-sultone reacts with model nucleophiles at position 3 by S(N) substitution. Both saturated and unsaturated sultones are sensitive to hydrolysis when reacted in water.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-228X
DOI:10.1021/tx000225n