Neuronal-specific endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration in mixed primary hippocampal culture homogenates

Endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration is crucial for maintenance of neuronal Ca(2+) homeostasis. The use of cell culture in conjunction with modern Ca(2+) imaging techniques has been invaluable in elucidating these mechanisms. While imaging protocols evaluate endoplasmic re...

Full description

Saved in:
Bibliographic Details
Published inAnalytical biochemistry Vol. 330; no. 1; pp. 130 - 139
Main Authors Parsons, J Travis, Sun, David A, DeLorenzo, Robert J, Churn, Severn B
Format Journal Article
LanguageEnglish
Published United States 01.07.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration is crucial for maintenance of neuronal Ca(2+) homeostasis. The use of cell culture in conjunction with modern Ca(2+) imaging techniques has been invaluable in elucidating these mechanisms. While imaging protocols evaluate endoplasmic reticulum Ca(2+) loads, measurement of Mg(2+)/Ca(2+) ATPase activity is indirect, comparing cytosolic Ca(2+) levels in the presence or absence of the Mg(2+)/Ca(2+) ATPase inhibitor thapsigargin. Direct measurement of Mg(2+)/Ca(2+) ATPase by isolation of microsomes is impossible due to the minuscule amounts of protein yielded from cultures used for imaging. In the current study, endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration was measured in mixed homogenates of neurons and glia from primary hippocampal cultures. It was demonstrated that Ca(2+) uptake was mediated by the endoplasmic reticulum Mg(2+)/Ca(2+) ATPase due to its dependence on ATP and Mg(2+), enhancement by oxalate, and inhibition by thapsigargin. It was also shown that neuronal Ca(2+) uptake, mediated by the type 2 sarco(endo)plasmic reticulum Ca(2+) ATPase isoform, could be distinguished from glial Ca(2+) uptake in homogenates composed of neurons and glia. Finally, it was revealed that Ca(2+) uptake was sensitive to incubation on ice, extremely labile in the absence of protease inhibitors, and significantly more stable under storage conditions at -80 degrees C.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2697
DOI:10.1016/j.ab.2004.03.025