Extracellular ATP increases NH4+ permeability in human lymphocytes by opening a P2Z purinoceptor operated ion channel
The permeability of lymphocytes to NH4+ was examined by measuring intracellular pH using the fluorescent pH-sensitive dye BCECF. Addition of 20 mM NH4Cl produced a rapid phase of alkalinization. This was followed by a slow return to resting pHi due to NH4+ influx. The rate of NH4+ was increased many...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 202; no. 3; pp. 1511 - 1516 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
15.08.1994
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The permeability of lymphocytes to NH4+ was examined by measuring intracellular pH using the fluorescent pH-sensitive dye BCECF. Addition of 20 mM NH4Cl produced a rapid phase of alkalinization. This was followed by a slow return to resting pHi due to NH4+ influx. The rate of NH4+ was increased many fold by extracellular ATP and the increment showed features consistent with NH4+ being a permeant for the P2Z purinoceptor operated ion channel. Cytosolic pH measurements showed monomethylammonium+ and dimethylammonium+ were also permeants, but trimethylammonium+ (69 Dalton) was excluded by this channel. Since our previous data showed ethidium+ (314 Dalton) is a permeant it appears that molecular conformation rather than molecular weight determines entry of cationic solutes through the channel. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-291X |
DOI: | 10.1006/bbrc.1994.2102 |