MicroRNA-152 represses VEGF and TGF beta 1 expressions through post-transcriptional inhibition of (Pro)renin receptor in human retinal endothelial cells

Purpose: The (pro)renin receptor (PRR), a component of the renin-angiotensin system (RAS), plays an important role in the physiologic and pathophysiological regulation of blood pressure and fluid/electrolyte homeostasis. The RAS including the PRR has been identified in retinal endothelial cells and...

Full description

Saved in:
Bibliographic Details
Published inMolecular vision Vol. 21; pp. 224 - 235
Main Authors Haque, Rashidul, Hur, Elizabeth H, Farrell, Annie N, Iuvone, P Michael, Howell, Jennifer C
Format Journal Article
LanguageEnglish
Published 07.03.2015
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose: The (pro)renin receptor (PRR), a component of the renin-angiotensin system (RAS), plays an important role in the physiologic and pathophysiological regulation of blood pressure and fluid/electrolyte homeostasis. The RAS including the PRR has been identified in retinal endothelial cells and other ocular tissues. In this study, the potential involvement of miRNAs in the posttranscriptional regulation of PRR was investigated in human retinal endothelial cells (hRECs) under high glucose (HG) conditions. Methods: miRNA-152 (miR-152) was identified in silico as a potential regulator of PRR, and this was confirmed by quantitative real-time PCR (qRT-PCR) and PRR 3'-untranslated region (UTR) reporter assays. Using RNA interference, both AT1R and PRR were implicated in the HG-mediated induction of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR-2), and transforming growth factor beta 1 (TGF beta 1). Results: The downregulation of miR-152 was observed in hRECs and rat retinal tissues under HG conditions. In parallel, PRR (target of miR-152), VEGF, VEGFR-2, and TGF beta 1 at mRNA levels were elevated. However, the transfection of hRECs with miR-152 mimics in HG conditions resulted in the suppression of the PRR expression, as well as reduced VEGF, VEGFR-2, and TGF beta 1 production. This was reversed by transfecting cells with the antisense (antagomir) of miR-152, suggesting the glucose-induced upregulation of VEGF, VEGFR-2, and TGF beta 1 is mediated through PRR, and this regulation is likely achieved through the HG-mediated modulation of miRNAs. Conclusions: We have demonstrated that miR-152 interacting with PRR regulates downstream VEGF, VRGFR-2, and TGF beta 1 expressions in hRECs in HG conditions. These studies suggest miR-152 and PRR may play a role in the pathogenesis of diabetic retinopathy (DR).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1090-0535
1090-0535