Doping engineering of Cu-based catalysts for electrocatalytic CO2 reduction to multi-carbon products
The electrocatalytic carbon dioxide reduction reaction (CO2RR) is a promising technology that uses renewable energy sources to convert excess atmospheric CO2 into high-value multi-carbon (C2+) products. In the CO2RR mechanism, adsorbed *CO is recognized as a crucial intermediate, playing a pivotal r...
Saved in:
Published in | Energy & environmental science Vol. 17; no. 16; pp. 5795 - 5818 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
13.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The electrocatalytic carbon dioxide reduction reaction (CO2RR) is a promising technology that uses renewable energy sources to convert excess atmospheric CO2 into high-value multi-carbon (C2+) products. In the CO2RR mechanism, adsorbed *CO is recognized as a crucial intermediate, playing a pivotal role in facilitating the formation of C2+ products. Currently, Cu-based materials are the most effective catalysts in producing *CO and further coupling it to form C2+ products. However, mono-component Cu catalysts still face some challenges, such as low activity, selectivity, and poor stability. Doping engineering has emerged as a valuable strategy for enhancing the performance of Cu-based catalysts in CO2 electroreduction into C2+ products. This comprehensive review presents the recent advancements in CO2 electroreduction into C2+ products over heteroatom-doped Cu-based catalysts, encompassing metallic heteroatoms such as Pd, Au and Ag, as well as non-metallic heteroatoms like P, B and F. The mechanism of enhanced performance through heteroatom doping is specifically highlighted, providing helpful guidance and avenues for the rational design of Cu-based catalysts. Additionally, the review discusses the challenges and prospects associated with the CO2RR into C2+ products, offering a nuanced perspective on this subject. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/d4ee01325e |