A novel approach to treating opioid use disorders: Dual agonists of glucagon-like peptide-1 receptors and neuropeptide Y 2 receptors
The widespread misuse of opioids and opioid use disorder (OUD) together constitute a major public health crisis in the United States. The greatest challenge for successfully treating OUD is preventing relapse. Unfortunately, there are few FDA-approved medications to treat OUD and, while effective, t...
Saved in:
Published in | Neuroscience and biobehavioral reviews Vol. 131; p. 1169 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The widespread misuse of opioids and opioid use disorder (OUD) together constitute a major public health crisis in the United States. The greatest challenge for successfully treating OUD is preventing relapse. Unfortunately, there are few FDA-approved medications to treat OUD and, while effective, these pharmacotherapies are limited by high relapse rates. Thus, there is a critical need for conceptually new approaches to developing novel medications to treat OUD. Here, we review an emerging preclinical literature that suggests that glucagon-like peptide-1 receptor (GLP-1R) agonists could be re-purposed for treating OUD. Potential limitations of this approach are also discussed along with an alternative strategy that involves simultaneously targeting and activating GLP-1Rs and neuropeptide Y2 receptors (Y2Rs) in the brain using a novel monomeric dual agonist peptide. Recent studies indicate that this combinatorial pharmacotherapy approach attenuates voluntary fentanyl taking and seeking in rats without producing adverse effects associated with GLP-1R agonist monotherapy alone. While future studies are required to comprehensively determine the behavioral effects of GLP-1R agonists and dual agonists of GLP-1Rs and Y2Rs in rodent models of OUD, these provocative preclinical findings highlight a potential new GLP-1R-based approach to preventing relapse in humans with OUD. |
---|---|
ISSN: | 1873-7528 |
DOI: | 10.1016/j.neubiorev.2021.10.026 |