Induction of therapeutic levels of HbF in genome‐edited primary β039‐thalassaemia haematopoietic stem and progenitor cells

Summary Hereditary persistence of fetal haemoglobin (HPFH) is the major modifier of the clinical severity of β‐thalassaemia. The homozygous mutation c.‐196 C>T in the Aγ‐globin (HBG1) promoter, which causes Sardinian δβ0‐thalassaemia, is able to completely rescue the β‐major thalassaemia phenotyp...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of haematology Vol. 192; no. 2; pp. 395 - 404
Main Authors Mingoia, Maura, Caria, Cristian A., Ye, Lin, Asunis, Isadora, Marongiu, M. Franca, Manunza, Laura, Sollaino, M. Carla, Wang, Jiaming, Cabriolu, Annalisa, Kurita, Ryo, Nakamura, Yukio, Cucca, Francesco, Kan, Yuet W., Marini, M. Giuseppina, Moi, Paolo
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary Hereditary persistence of fetal haemoglobin (HPFH) is the major modifier of the clinical severity of β‐thalassaemia. The homozygous mutation c.‐196 C>T in the Aγ‐globin (HBG1) promoter, which causes Sardinian δβ0‐thalassaemia, is able to completely rescue the β‐major thalassaemia phenotype caused by the β039‐thalassaemia mutation, ensuring high levels of fetal haemoglobin synthesis during adulthood. Here, we describe a CRISPR/Cas9 genome‐editing approach, combined with the non‐homologous end joining (NHEJ) pathway repair, aimed at reproducing the effects of this naturally occurring HPFH mutation in both HBG promoters. After selecting the most efficient guide RNA in K562 cells, we edited the HBG promoters in human umbilical cord blood‐derived erythroid progenitor 2 cells (HUDEP‐2) and in haematopoietic stem and progenitor cells (HSPCs) from β0‐thalassaemia patients to assess the therapeutic potential of HbF induction. Our results indicate that small deletions targeting the −196‐promoter region restore high levels of fetal haemoglobin (HbF) synthesis in all cell types tested. In pools of HSPCs derived from homozygous β039‐thalassaemia patients, a 20% editing determined a parallel 20% increase of HbF compared to unedited pools. These results suggest that editing the region of HBG promoters around the −196 position has the potential to induce therapeutic levels of HbF in patients with most types of β‐thalassaemia irrespective of the β‐globin gene (HBB) mutations.
ISSN:0007-1048
1365-2141
DOI:10.1111/bjh.17167