A Super Strong Engineered Auxin–TIR1 Pair

Abstract Auxin regulates diverse aspects of plant growth and development through induction of the interaction between TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX proteins (TIR1/AFBs) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) co-receptor proteins and the subsequent transcriptional regulation....

Full description

Saved in:
Bibliographic Details
Published inPlant and cell physiology Vol. 59; no. 8; pp. 1538 - 1544
Main Authors Yamada, Ryotaro, Murai, Keiichiro, Uchida, Naoyuki, Takahashi, Koji, Iwasaki, Rie, Tada, Yasuomi, Kinoshita, Toshinori, Itami, Kenichiro, Torii, Keiko U, Hagihara, Shinya
Format Journal Article
LanguageEnglish
Published Japan Oxford University Press 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Auxin regulates diverse aspects of plant growth and development through induction of the interaction between TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX proteins (TIR1/AFBs) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) co-receptor proteins and the subsequent transcriptional regulation. The artificial control of endogenous auxin signaling should enable the precise delineation of auxin-mediated biological events as well as the agricultural application of auxin. To this end, we previously developed a synthetic auxin–receptor pair that consists of 5-(3-methoxyphenyl)-IAA (convexIAA, cvxIAA) and the engineered TIR1 whose phenylalanine at position 79 in the auxin-binding pocket is substituted to glycine (TIR1F79G) (concaveTIR1, ccvTIR1). This synthetic auxin–receptor pair works orthogonally to natural auxin signaling in transgenic plants harboring the engineered TIR1 by exogenous application of 5-(3-methoxyphenyl)-IAA, and has potential to be utilized as novel agricultural/horticultural tools. In the present study, we report an improved version of the synthetic cvxIAA–ccvTIR1 pair such that synthetic IAA can act at lower concentrations. Using a yeast two-hybrid system, we screened various 5-substituted IAAs and identified 5-adamantyl-IAA, named pico_cvxIAA, which mediates interaction of TIR1F79G and IAA3 proteins at a 1,000-fold lower concentration than the original version, 5-(3-methoxyphenyl)-IAA. Furthermore, we found that TIR1F79A interacts with IAA3 protein in the presence of picomolar concentrations of 5-adamantyl-IAA, 10,000-fold lower than our prototype version of the cvxIAA–ccvTIR1 pair. In addition, pull-down assays confirmed that 5-adamantyl-IAA mediates in vitro interaction of TIR1F79A and IAA7-DII peptides at lower concentrations. The improved synthetic IAA–TIR1 pair with high affinity would be beneficial for basic science as well as for practical use in agriculture/horticulture.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-0781
1471-9053
DOI:10.1093/pcp/pcy127