Two new organic-inorganic hybrid compounds based on metal-pyrazine coordination polymers and Keggin polyoxometalates: effect of metal ions on the structure
Through changing the metal ions, two Keggin polyoxometalates-based hybrid compounds, [Cu{sub 5}(pz){sub 6}(Cl)(SiW{sub 12}O{sub 40})] (1) and [Ag{sub 4}(pz){sub 3}(H{sub 2}O){sub 2}(SiW{sub 12}O{sub 40})] (2) (pz=pyrazine), were hydrothermally synthesized and characterized by an elemental analysis,...
Saved in:
Published in | Journal of solid state chemistry Vol. 183; no. 12; pp. 2925 - 2931 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier
01.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Through changing the metal ions, two Keggin polyoxometalates-based hybrid compounds, [Cu{sub 5}(pz){sub 6}(Cl)(SiW{sub 12}O{sub 40})] (1) and [Ag{sub 4}(pz){sub 3}(H{sub 2}O){sub 2}(SiW{sub 12}O{sub 40})] (2) (pz=pyrazine), were hydrothermally synthesized and characterized by an elemental analysis, IR spectroscopy, thermogravimetric analyses, and single X-ray diffraction. In compound 1, the metal-organic motif exhibits a 6{sup 3} topological 2-D sheet, which is further fused by the [SiW{sub 12}O{sub 40}]{sup 4-} anions to construct a (6.7.8)(6{sup 3}.7.8{sup 2})(6{sup 3})(6{sup 5}.7)(6{sup 5}.8) topological 3D structure. In compound 2, the bridging groups Ag{sub 2}(pz) connect the [SiW{sub 12}O{sub 40}]{sup 4-} anions to form a (5{sup 3}){sub 2}(5{sup 4}.8{sup 2}) topological 2-D layer, which is further linked by an [Ag(pz)]{sub n}{sup n+} chains to construct a 3D structure with the (3{sup 4}.4{sup 16}.5{sup 24}.6{sup 12}.7{sup 8}.8{sup 2})(3{sup 4}.4{sup 6}.5{sup 4}.6){sub 2}(4.5{sup 2}){sub 2} topology. It represents the highest connected network topology presently known for the polyoxometalates system. The structure differences of compounds 1 and 2 reveal that the coordination numbers and geometries of the metal ions have a great influence on the final structure and topology of the Keggin POMs-based hybrid compounds. In addition, the electrochemistry properties of the two compounds have been studied. -- Graphical Abstract: Two new highly connected Keggin POMs-based hybrids have been synthesized by changing metal ions under hydrothermal conditions and the effect of metal ions on the final structure and topology of the POMs-based hybrid compounds was discussed. Display Omitted |
---|---|
ISSN: | 0022-4596 1095-726X |
DOI: | 10.1016/j.jssc.2010.09.034 |