Field-Angle-Resolved Magnetic Excitations as a Probe of Hidden-Order Symmetry in CeB6
In contrast to magnetic order formed by electrons’ dipolar moments, ordering phenomena associated with higher-order multipoles (quadrupoles, octupoles, etc.) are more difficult to characterize because of the limited choice of experimental probes that can distinguish different multipolar moments. The...
Saved in:
Published in | Physical review. X Vol. 10; no. 2 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In contrast to magnetic order formed by electrons’ dipolar moments, ordering phenomena associated with higher-order multipoles (quadrupoles, octupoles, etc.) are more difficult to characterize because of the limited choice of experimental probes that can distinguish different multipolar moments. The heavy-fermion compoundCeB6and its La-diluted alloys are among the best-studied realizations of the long-range-ordered multipolar phases, often referred to as “hidden order.” Previously, the hidden order in phase II was identified as primary antiferroquadrupolar and field-induced octupolar order. Here, we present a combined experimental and theoretical investigation of collective excitations in phase II ofCeB6. Inelastic neutron scattering (INS) in fields up to 16.5 T reveals a new high-energy mode above 14 T in addition to the low-energy magnetic excitations. The experimental dependence of their energy on the magnitude and angle of the applied magnetic field is compared to the results of a multipolar interaction model. The magnetic excitation spectrum in a rotating field is calculated within a localized approach using the pseudospin representation for theΓ8states. We show that the rotating-field technique at fixed momentum can complement conventional INS measurements of the dispersion at a constant field and holds great promise for identifying the symmetry of multipolar order parameters and the details of intermultipolar interactions that stabilize hidden-order phases. |
---|---|
ISSN: | 2160-3308 |
DOI: | 10.1103/PhysRevX.10.021010 |