Graphene-extracted membrane lipids facilitate the activation of integrin αvβ8

Despite the remarkable electrochemical properties of graphene, strong van der Waals attraction between graphene and biomolecules often causes cytotoxicity, which hinders its applications in the biomedical field. Unfortunately, surface passivation of graphene might stimulate undesired immune response...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 14; pp. 7939 - 7949
Main Authors Chen, Serena H, Perez-Aguilar, Jose Manuel, Zhou, Ruhong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Despite the remarkable electrochemical properties of graphene, strong van der Waals attraction between graphene and biomolecules often causes cytotoxicity, which hinders its applications in the biomedical field. Unfortunately, surface passivation of graphene might stimulate undesired immune response as the nanomaterial triggers cytokine production through membrane receptor activation. Herein, we use all-atom Molecular Dynamics (MD) simulations to unravel the underlying mechanism of graphene-induced inside-out activation of integrin αvβ8, a prominent membrane receptor expressed in immune cells. We model the transmembrane (TM) domains of integrin αvβ8 in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer and observe the structural changes in the integrin–membrane complex when interacting with a graphene nanosheet across the membrane. We find that the β8 TM domain interacts with the graphene nanosheet directly or indirectly through extracted lipids, facilitating the pulling of a β8 subunit away from an αv subunit and thus leading to the disruption of the TM domain association by breaking the hydrophobic cluster in the cytoplasmic domains of the αv and β8 subunits. Alanine substitution of two conserved phenylalanine residues on the αv subunit at this hydrophobic cluster further reveals the importance of a stable T-shaped structure in retaining integrin in its inactive state. Our results agree with previous studies on the interactions between other integrin subtypes and their endogenous activators, suggesting an intriguing role that the graphene nanosheet may play in the integrin-related signal transduction during its interaction with the membrane.
Bibliography:USDOE
W. M. Keck Foundation
AC05-00OR22725
IBM Blue Gene Science Program
ISSN:2040-3364
2040-3372
DOI:10.1039/c9nr10469k