Domain-wall confinement and dynamics in a quantum simulator
Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in particle physics, in which baryons and mesons are produced by quark confinement. Confinement can also occur in low-energy quantum many-body...
Saved in:
Published in | Nature physics Vol. 17; no. 6; pp. 742 - 747 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2021
Nature Publishing Group Nature Publishing Group (NPG) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in particle physics, in which baryons and mesons are produced by quark confinement. Confinement can also occur in low-energy quantum many-body systems when elementary excitations are confined into bound quasiparticles. Here we report the observation of magnetic domain-wall confinement in interacting spin chains with a trapped-ion quantum simulator. By measuring how correlations spread, we show that confinement can suppress information propagation and thermalization in such many-body systems. We quantitatively determine the excitation energy of domain-wall bound states from the non-equilibrium quench dynamics. We also study the number of domain-wall excitations created for different quench parameters, in a regime that is difficult to model with classical computers. This work demonstrates the capability of quantum simulators for investigating high-energy physics phenomena, such as quark collision and string breaking.
Long-range Ising interactions present in one-dimensional spin chains can induce a confining potential between pairs of domain walls, slowing down the thermalization of the system. This has now been observed in a trapped-ion quantum simulator. |
---|---|
AbstractList | Not provided. Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in particle physics, in which baryons and mesons are produced by quark confinement. Confinement can also occur in low-energy quantum many-body systems when elementary excitations are confined into bound quasiparticles. Here we report the observation of magnetic domain-wall confinement in interacting spin chains with a trapped-ion quantum simulator. By measuring how correlations spread, we show that confinement can suppress information propagation and thermalization in such many-body systems. We quantitatively determine the excitation energy of domain-wall bound states from the non-equilibrium quench dynamics. We also study the number of domain-wall excitations created for different quench parameters, in a regime that is difficult to model with classical computers. This work demonstrates the capability of quantum simulators for investigating high-energy physics phenomena, such as quark collision and string breaking.Long-range Ising interactions present in one-dimensional spin chains can induce a confining potential between pairs of domain walls, slowing down the thermalization of the system. This has now been observed in a trapped-ion quantum simulator. Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in particle physics, in which baryons and mesons are produced by quark confinement. Confinement can also occur in low-energy quantum many-body systems when elementary excitations are confined into bound quasiparticles. Here we report the observation of magnetic domain-wall confinement in interacting spin chains with a trapped-ion quantum simulator. By measuring how correlations spread, we show that confinement can suppress information propagation and thermalization in such many-body systems. We quantitatively determine the excitation energy of domain-wall bound states from the non-equilibrium quench dynamics. We also study the number of domain-wall excitations created for different quench parameters, in a regime that is difficult to model with classical computers. This work demonstrates the capability of quantum simulators for investigating high-energy physics phenomena, such as quark collision and string breaking. Long-range Ising interactions present in one-dimensional spin chains can induce a confining potential between pairs of domain walls, slowing down the thermalization of the system. This has now been observed in a trapped-ion quantum simulator. |
Author | Tan, W. L. Monroe, C. Whitsitt, S. Lundgren, R. De, A. Feng, L. Morong, W. Kaplan, H. B. Gorshkov, A. V. Becker, P. Collins, K. S. Kyprianidis, A. Pagano, G. Liu, F. |
Author_xml | – sequence: 1 givenname: W. L. orcidid: 0000-0003-2353-2678 surname: Tan fullname: Tan, W. L. email: wltan93@terpmail.umd.edu organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 2 givenname: P. orcidid: 0000-0002-7786-9447 surname: Becker fullname: Becker, P. email: pbecker1@terpmail.umd.edu organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 3 givenname: F. surname: Liu fullname: Liu, F. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 4 givenname: G. orcidid: 0000-0002-6760-4015 surname: Pagano fullname: Pagano, G. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST, Department of Physics and Astronomy, Rice University – sequence: 5 givenname: K. S. orcidid: 0000-0002-6159-8013 surname: Collins fullname: Collins, K. S. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 6 givenname: A. surname: De fullname: De, A. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 7 givenname: L. surname: Feng fullname: Feng, L. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 8 givenname: H. B. surname: Kaplan fullname: Kaplan, H. B. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 9 givenname: A. orcidid: 0000-0002-7751-0100 surname: Kyprianidis fullname: Kyprianidis, A. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 10 givenname: R. surname: Lundgren fullname: Lundgren, R. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 11 givenname: W. orcidid: 0000-0003-4880-8159 surname: Morong fullname: Morong, W. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 12 givenname: S. surname: Whitsitt fullname: Whitsitt, S. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 13 givenname: A. V. orcidid: 0000-0003-0509-3421 surname: Gorshkov fullname: Gorshkov, A. V. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST – sequence: 14 givenname: C. surname: Monroe fullname: Monroe, C. organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST |
BackLink | https://www.osti.gov/biblio/1853152$$D View this record in Osti.gov |
BookMark | eNpFkEtLxDAYRYOM4Iz6B1wVXUfz5dEmuJLxCQNuZh_SNNUMbTLTpIj_3mpFV_cuDpfLWaFFiMEhdAHkGgiTN4mDKCtMKGACoDhmR2gJFReYcgmLv16xE7RKaUcIpyWwJbq9j73xAX-YritsDK0PrnchFyY0RfMZTO9tKnwoTHEYTchjXyTfj53JcThDx63pkjv_zVO0fXzYrp_x5vXpZX23wREkz1jSqnREyaauDDeNdLxVNadKtm0FtmwYcGsaUlurhBPOOtMqp0CWtmYGFDtFl_NsTNnrZH129n26GpzNGqRgIOgEXc3QfoiH0aWsd3EcwnRLU8EUU5UgYqLYTKX94MObG_4pIPrbpJ5N6smk_jGpGfsC8p1oEw |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021. |
CorporateAuthor | Univ. of California, Oakland, CA (United States) Duke Univ., Durham, NC (United States) |
CorporateAuthor_xml | – name: Univ. of California, Oakland, CA (United States) – name: Duke Univ., Durham, NC (United States) |
DBID | 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U OTOTI |
DOI | 10.1038/s41567-021-01194-3 |
DatabaseName | ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic OSTI.GOV |
DatabaseTitle | ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 747 |
ExternalDocumentID | 1853152 10_1038_s41567_021_01194_3 |
GrantInformation_xml | – fundername: This work is supported by the NSF PFCQC STAQ program, the AFOSR MURIs on Quantum Measurement/Verification, the ARO MURI on Modular Quantum Systems, the AFOSR and ARO QIS and AMO Programs, the DARPA DRINQS program, the DOE BES award DE-SC0019449, and the DOE HEP award DE-SC0019380, the NSF QIS program. Fangli Liu is supported by Ann G.Wylie Dissertation Fellowship of University of Maryland – fundername: This work is supported by the NSF PFCQC STAQ program, the AFOSR MURIs on Quantum Measurement/Verification, the ARO MURI on Modular Quantum Systems, the AFOSR and ARO QIS and AMO Programs, the DARPA DRINQS program, the DOE BES award DE-SC0019449, and the DOE HEP award DE-SC0019380, the NSF QIS program. |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M 7U5 7XB 8FD 8FK ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR L7M PHGZM PHGZT PKEHL PQEST PQGLB PQUKI Q9U AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-o184t-8276e098db7a4ad8e4f9b4298ff71c6d314cad0bcc95e5eceaf9e9186cb3a193 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Fri May 19 00:47:23 EDT 2023 Sat Aug 16 19:52:42 EDT 2025 Fri Feb 21 02:37:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-o184t-8276e098db7a4ad8e4f9b4298ff71c6d314cad0bcc95e5eceaf9e9186cb3a193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0019380; SC0019449 USDOE Office of Science (SC) |
ORCID | 0000-0003-4880-8159 0000-0003-2353-2678 0000-0003-0509-3421 0000-0002-6159-8013 0000-0002-7786-9447 0000-0002-6760-4015 0000-0002-7751-0100 0000000277869447 0000000261598013 0000000323532678 0000000348808159 0000000305093421 0000000277510100 0000000267604015 |
PQID | 2539397505 |
PQPubID | 27545 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1853152 proquest_journals_2539397505 springer_journals_10_1038_s41567_021_01194_3 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Publishing Group (NPG) |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Publishing Group (NPG) |
References | MachadoFElseDVKahanamoku-MeyerGDNayakCYaoNYLong-range prethermal phases of nonequilibrium matterPhys. Rev. X202010011043 ZhangJObservation of a many-body dynamical phase transition with a 53-qubit quantum simulatorNature20175516016042017Natur.551..601Z10.1038/nature24654 LeroseAŽunkovičBSilvaAGambassiAQuasilocal excitations induced by long-range interactions in translationally invariant quantum spin chainsPhys. Rev. B2019991211122019PhRvB..99l1112L10.1103/PhysRevB.99.121112 JamesAJAKonikRMRobinsonNJNonthermal states arising from confinement in one and two dimensionsPhy. Rev. Lett.20191221306032019PhRvL.122m0603J10.1103/PhysRevLett.122.130603 GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861531852014RvMP...86..153G10.1103/RevModPhys.86.153 SantosLFBorgonoviFCelardoGLCooperative shielding in many-body systems with long-range interactionPhys. Rev. Lett.20161162504022016PhRvL.116y0402S10.1103/PhysRevLett.116.250402 TranMCLocality and heating in periodically driven, power-law interacting systemsPhys. Rev. A20191000521032019PhRvA.100e2103T10.1103/PhysRevA.100.052103 HessPWNon-thermalization in trapped atomic ion spin chainsPhil. Trans. R. Soc. A2017375201701072017RSPTA.37570107H10.1098/rsta.2017.0107 MazzaPPPerfettoGLeroseAColluraMGambassiASuppression of transport in nondisordered quantum spin chains due to confined excitationsPhys. Rev. B2019991803022019PhRvB..99r0302M10.1103/PhysRevB.99.180302 KormosMColluraMTakácsGCalabresePReal-time confinement following a quantum quench to a non-integrable modelNat. Phys.20171324624910.1038/nphys3934 BrambillaNQCD and strongly coupled gauge theories: challenges and perspectivesEur. Phys. J. C201474298110.1140/epjc/s10052-014-2981-5 LeroseAQuasilocalized dynamics from confinement of quantum excitationsPhys. Rev. B20201020411182020PhRvB.102d1118L416219710.1103/PhysRevB.102.041118 Joseph WangC-CFreericksJKIntrinsic phonon effects on analog quantum simulators with ultracold trapped ionsPhys. Rev. A2012860323292012PhRvA..86c2329W10.1103/PhysRevA.86.032329 EisertJFriesdorfMGogolinCQuantum many-body systems out of equilibriumNat. Phys.20151112413010.1038/nphys3215 MølmerKSørensenAMultiparticle entanglement of hot trapped ionsPhys. Rev. Lett.199982183518381999PhRvL..82.1835M10.1103/PhysRevLett.82.1835 MuschikCU(1) Wilson lattice gauge theories in digital quantum simulatorsNew J. Phys.2017191030202017NJPh...19j3020M10.1088/1367-2630/aa89ab BohnetJGQuantum spin dynamics and entanglement generation with hundreds of trapped ionsScience2016352129713012016Sci...352.1297B35607621355.8118110.1126/science.aad9958 ColdeaRQuantum criticality in an Ising chain: experimental evidence for emergent E8 symmetryScience20103271771802010Sci...327..177C10.1126/science.1180085 CheneauMLight-cone-like spreading of correlations in a quantum many-body systemNature20124814844872012Natur.481..484C10.1038/nature10748 Calabrese, P., Essler, F.H.L. & Fagotti, M. Quantum quenches in the transverse field Ising chain: II. Stationary state properties. J. Stat. Mech. 2012, P07022 (2012). NandkishoreRHuseDAMany-body localization and thermalization in quantum statistical mechanicsAnnu. Rev. Condens. Matter Phys.2015615382015ARCMP...6...15N10.1146/annurev-conmatphys-031214-014726 SchachenmayerJLanyonBPRoosCFDaleyAJEntanglement growth in quench dynamics with variable range interactionsPhys. Rev. X20133031015 GörgFRealization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matterNat. Phys.2019151161116710.1038/s41567-019-0615-4 LeeACEngineering large Stark shifts for control of individual clock state qubitsPhys. Rev. A2016940423082016PhRvA..94d2308L10.1103/PhysRevA.94.042308 Wu, Y. Quantum Computation in Large Ion Crystals. PhD thesis, Univ. Michigan (2019). NeyenhuisBObservation of prethermalization in long-range interacting spin chainsSci. Adv.20173e17006722017SciA....3E0672N10.1126/sciadv.1700672 McCoyBMWuTTTwo-dimensional Ising field theory in a magnetic field: breakup of the cut in the two-point functionPhys. Rev. D197818125912671978PhRvD..18.1259M10.1103/PhysRevD.18.1259 BañulsMCSimulating lattice gauge theories within quantum technologiesEur. Phys. J. D2020742020EPJD...74..165B10.1140/epjd/e2020-100571-8 del CampoAZurekWHUniversality of phase transition dynamics: topological defects from symmetry breakingInt. J. Mod. Phys. A201429143001810.1142/S0217751X1430018X DelfinoGMussardoGThe spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = TCNucl. Phys. B19954557247581995NuPhB.455..724D0925.8204210.1016/0550-3213(95)00464-4 KimKEntanglement and tunable spin-spin couplings between trapped ions using multiple transverse modesPhys. Rev. Lett.20091031205022009PhRvL.103l0502K10.1103/PhysRevLett.103.120502 Greensite, J. An Introduction to the Confinement Problem 1–2 (Springer, 2011). VerdelRLiuFWhitsittSGorshkovAVHeylMReal-time dynamics of string breaking in quantum spin chainsPhys. Rev. B20201020143082020PhRvB.102a4308V10.1103/PhysRevB.102.014308 BrenesMDalmonteMHeylMScardicchioAMany-body localization dynamics from gauge invariancePhys. Rev. Lett.20181200306012018PhRvL.120c0601B375813310.1103/PhysRevLett.120.030601 Fonseca, P. & Zamolodchikov, A. Ising spectroscopy I: mesons at T < TC. Preprint at https://arxiv.org/abs/hep-th/0612304 (2006). JurcevicPDirect observation of dynamical quantum phase transitions in an interacting many-body systemPhys. Rev. Lett.20171190805012017PhRvL.119h0501J10.1103/PhysRevLett.119.080501 LiuFConfined quasiparticle dynamics in long-range interacting quantum spin chainsPhys. Rev. Lett.20191221506012019PhRvL.122o0601L10.1103/PhysRevLett.122.150601 Borla, U., Verresen, R., Grusdt, F. & Moroz, S. Confined phases of one-dimensional spinless fermions coupled to Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Bbb{Z}}_2$$\end{document} gauge theory. Phys. Rev. Lett.124, 120503 (2020). SchweizerCFloquet approach to Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}_2$$\end{document} lattice gauge theories with ultracold atoms in optical latticesNat. Phys.2019151168117310.1038/s41567-019-0649-7 EsslerFHLKehreinSManmanaSRRobinsonNJQuench dynamics in a model with tuneable integrability breakingPhys. Rev. B2014891651042014PhRvB..89p5104E10.1103/PhysRevB.89.165104 HalimehJCPrethermalization and persistent order in the absence of a thermal phase transitionPhys. Rev. B2017950243022017PhRvB..95b4302H10.1103/PhysRevB.95.024302 FeynmanRPSimulating physics with computersInt. J. Theor. Phys.19822146748865831110.1007/BF02650179 ŽunkovičBHeylMKnapMSilvaADynamical quantum phase transitions in spin chains with long-range interactions: merging different concepts of nonequilibrium criticalityPhys. Rev. Lett.20181201306012018PhRvL.120m0601Z10.1103/PhysRevLett.120.130601 SchreiberMObservation of many-body localization of interacting fermions in a quasirandom optical latticeScience20153498428452015Sci...349..842S34097231355.8117910.1126/science.aaa7432 HalimehJCZauner-StauberVDynamical phase diagram of spin chains with long-range interactionsPhys. Rev. B2017961344272017PhRvB..96m4427H10.1103/PhysRevB.96.134427 LakeBConfinement of fractional quantum number particles in a condensed-matter systemNat. Phys.20106505510.1038/nphys1462 Magnifico, G. et al. Real time dynamics and confinement in the Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Bbb{Z}}}_{n}$$\end{document} Schwinger–Weyl lattice model for 1+1 QED. Quantum4, 281 (2020). Vovrosh, J. & Knolle, J. Confinement dynamics on a digital quantum computer. Preprint at https://arxiv.org/abs/2001.03044 (2020). CalabresePCardyJTime dependence of correlation functions following a quantum quenchPhys. Rev. Lett.2006961368012006PhRvL..96m6801C10.1103/PhysRevLett.96.136801 BañulsMCCiracJIHastingsMBStrong and weak thermalization of infinite nonintegrable quantum systemsPhys. Rev. Lett.20111060504052011PhRvL.106e0405B10.1103/PhysRevLett.106.050405 PaganoGCryogenic trapped-ion system for large scale quantum simulationQuantum Sci. Technol.201840140042019QS&T....4a4004P10.1088/2058-9565/aae0fe AbaninDRoeckWDHoWWHuveneersFA rigorous theory of many-body prethermalization for periodically driven and closed quantum systemsCommun. Math. Phys.20173548098272017CMaPh.354..809A36686101370.8122610.1007/s00220-017-2930-x WinelandDJExperimental issues in coherent quantum-state manipulation of trapped atomic ionsJ. Res. Natl Inst. Stand. Technol.199810325932810.6028/jres.103.019 PorrasDCiracJIEffective spin systems with trapped ionsPhys. Rev. Lett.2004922079012004PhRvL..92t7901P10.1103/PhysRevLett.92.207901 MilAA scalable realization of local U(1) gauge invariance in cold atomic mixturesScience2020367112811302020Sci...367.1128M10.1126/science.aaz5312 |
References_xml | – reference: WinelandDJExperimental issues in coherent quantum-state manipulation of trapped atomic ionsJ. Res. Natl Inst. Stand. Technol.199810325932810.6028/jres.103.019 – reference: JamesAJAKonikRMRobinsonNJNonthermal states arising from confinement in one and two dimensionsPhy. Rev. Lett.20191221306032019PhRvL.122m0603J10.1103/PhysRevLett.122.130603 – reference: TranMCLocality and heating in periodically driven, power-law interacting systemsPhys. Rev. A20191000521032019PhRvA.100e2103T10.1103/PhysRevA.100.052103 – reference: Greensite, J. An Introduction to the Confinement Problem 1–2 (Springer, 2011). – reference: KormosMColluraMTakácsGCalabresePReal-time confinement following a quantum quench to a non-integrable modelNat. Phys.20171324624910.1038/nphys3934 – reference: SantosLFBorgonoviFCelardoGLCooperative shielding in many-body systems with long-range interactionPhys. Rev. Lett.20161162504022016PhRvL.116y0402S10.1103/PhysRevLett.116.250402 – reference: GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861531852014RvMP...86..153G10.1103/RevModPhys.86.153 – reference: KimKEntanglement and tunable spin-spin couplings between trapped ions using multiple transverse modesPhys. Rev. Lett.20091031205022009PhRvL.103l0502K10.1103/PhysRevLett.103.120502 – reference: ColdeaRQuantum criticality in an Ising chain: experimental evidence for emergent E8 symmetryScience20103271771802010Sci...327..177C10.1126/science.1180085 – reference: MilAA scalable realization of local U(1) gauge invariance in cold atomic mixturesScience2020367112811302020Sci...367.1128M10.1126/science.aaz5312 – reference: NeyenhuisBObservation of prethermalization in long-range interacting spin chainsSci. Adv.20173e17006722017SciA....3E0672N10.1126/sciadv.1700672 – reference: MølmerKSørensenAMultiparticle entanglement of hot trapped ionsPhys. Rev. Lett.199982183518381999PhRvL..82.1835M10.1103/PhysRevLett.82.1835 – reference: PorrasDCiracJIEffective spin systems with trapped ionsPhys. Rev. Lett.2004922079012004PhRvL..92t7901P10.1103/PhysRevLett.92.207901 – reference: JurcevicPDirect observation of dynamical quantum phase transitions in an interacting many-body systemPhys. Rev. Lett.20171190805012017PhRvL.119h0501J10.1103/PhysRevLett.119.080501 – reference: GörgFRealization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matterNat. Phys.2019151161116710.1038/s41567-019-0615-4 – reference: Joseph WangC-CFreericksJKIntrinsic phonon effects on analog quantum simulators with ultracold trapped ionsPhys. Rev. A2012860323292012PhRvA..86c2329W10.1103/PhysRevA.86.032329 – reference: EisertJFriesdorfMGogolinCQuantum many-body systems out of equilibriumNat. Phys.20151112413010.1038/nphys3215 – reference: del CampoAZurekWHUniversality of phase transition dynamics: topological defects from symmetry breakingInt. J. Mod. Phys. A201429143001810.1142/S0217751X1430018X – reference: CalabresePCardyJTime dependence of correlation functions following a quantum quenchPhys. Rev. Lett.2006961368012006PhRvL..96m6801C10.1103/PhysRevLett.96.136801 – reference: NandkishoreRHuseDAMany-body localization and thermalization in quantum statistical mechanicsAnnu. Rev. Condens. Matter Phys.2015615382015ARCMP...6...15N10.1146/annurev-conmatphys-031214-014726 – reference: LeroseAQuasilocalized dynamics from confinement of quantum excitationsPhys. Rev. B20201020411182020PhRvB.102d1118L416219710.1103/PhysRevB.102.041118 – reference: FeynmanRPSimulating physics with computersInt. J. Theor. Phys.19822146748865831110.1007/BF02650179 – reference: VerdelRLiuFWhitsittSGorshkovAVHeylMReal-time dynamics of string breaking in quantum spin chainsPhys. Rev. B20201020143082020PhRvB.102a4308V10.1103/PhysRevB.102.014308 – reference: HessPWNon-thermalization in trapped atomic ion spin chainsPhil. Trans. R. Soc. A2017375201701072017RSPTA.37570107H10.1098/rsta.2017.0107 – reference: HalimehJCPrethermalization and persistent order in the absence of a thermal phase transitionPhys. Rev. B2017950243022017PhRvB..95b4302H10.1103/PhysRevB.95.024302 – reference: MuschikCU(1) Wilson lattice gauge theories in digital quantum simulatorsNew J. Phys.2017191030202017NJPh...19j3020M10.1088/1367-2630/aa89ab – reference: Calabrese, P., Essler, F.H.L. & Fagotti, M. Quantum quenches in the transverse field Ising chain: II. Stationary state properties. J. Stat. Mech. 2012, P07022 (2012). – reference: SchreiberMObservation of many-body localization of interacting fermions in a quasirandom optical latticeScience20153498428452015Sci...349..842S34097231355.8117910.1126/science.aaa7432 – reference: BrenesMDalmonteMHeylMScardicchioAMany-body localization dynamics from gauge invariancePhys. Rev. Lett.20181200306012018PhRvL.120c0601B375813310.1103/PhysRevLett.120.030601 – reference: SchachenmayerJLanyonBPRoosCFDaleyAJEntanglement growth in quench dynamics with variable range interactionsPhys. Rev. X20133031015 – reference: BohnetJGQuantum spin dynamics and entanglement generation with hundreds of trapped ionsScience2016352129713012016Sci...352.1297B35607621355.8118110.1126/science.aad9958 – reference: LeeACEngineering large Stark shifts for control of individual clock state qubitsPhys. Rev. A2016940423082016PhRvA..94d2308L10.1103/PhysRevA.94.042308 – reference: BrambillaNQCD and strongly coupled gauge theories: challenges and perspectivesEur. Phys. J. C201474298110.1140/epjc/s10052-014-2981-5 – reference: Fonseca, P. & Zamolodchikov, A. Ising spectroscopy I: mesons at T < TC. Preprint at https://arxiv.org/abs/hep-th/0612304 (2006). – reference: ŽunkovičBHeylMKnapMSilvaADynamical quantum phase transitions in spin chains with long-range interactions: merging different concepts of nonequilibrium criticalityPhys. Rev. Lett.20181201306012018PhRvL.120m0601Z10.1103/PhysRevLett.120.130601 – reference: LakeBConfinement of fractional quantum number particles in a condensed-matter systemNat. Phys.20106505510.1038/nphys1462 – reference: LiuFConfined quasiparticle dynamics in long-range interacting quantum spin chainsPhys. Rev. Lett.20191221506012019PhRvL.122o0601L10.1103/PhysRevLett.122.150601 – reference: Magnifico, G. et al. Real time dynamics and confinement in the Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Bbb{Z}}}_{n}$$\end{document} Schwinger–Weyl lattice model for 1+1 QED. Quantum4, 281 (2020). – reference: SchweizerCFloquet approach to Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}_2$$\end{document} lattice gauge theories with ultracold atoms in optical latticesNat. Phys.2019151168117310.1038/s41567-019-0649-7 – reference: CheneauMLight-cone-like spreading of correlations in a quantum many-body systemNature20124814844872012Natur.481..484C10.1038/nature10748 – reference: AbaninDRoeckWDHoWWHuveneersFA rigorous theory of many-body prethermalization for periodically driven and closed quantum systemsCommun. Math. Phys.20173548098272017CMaPh.354..809A36686101370.8122610.1007/s00220-017-2930-x – reference: MazzaPPPerfettoGLeroseAColluraMGambassiASuppression of transport in nondisordered quantum spin chains due to confined excitationsPhys. Rev. B2019991803022019PhRvB..99r0302M10.1103/PhysRevB.99.180302 – reference: Wu, Y. Quantum Computation in Large Ion Crystals. PhD thesis, Univ. Michigan (2019). – reference: ZhangJObservation of a many-body dynamical phase transition with a 53-qubit quantum simulatorNature20175516016042017Natur.551..601Z10.1038/nature24654 – reference: BañulsMCSimulating lattice gauge theories within quantum technologiesEur. Phys. J. D2020742020EPJD...74..165B10.1140/epjd/e2020-100571-8 – reference: BañulsMCCiracJIHastingsMBStrong and weak thermalization of infinite nonintegrable quantum systemsPhys. Rev. Lett.20111060504052011PhRvL.106e0405B10.1103/PhysRevLett.106.050405 – reference: MachadoFElseDVKahanamoku-MeyerGDNayakCYaoNYLong-range prethermal phases of nonequilibrium matterPhys. Rev. X202010011043 – reference: Vovrosh, J. & Knolle, J. Confinement dynamics on a digital quantum computer. Preprint at https://arxiv.org/abs/2001.03044 (2020). – reference: PaganoGCryogenic trapped-ion system for large scale quantum simulationQuantum Sci. Technol.201840140042019QS&T....4a4004P10.1088/2058-9565/aae0fe – reference: McCoyBMWuTTTwo-dimensional Ising field theory in a magnetic field: breakup of the cut in the two-point functionPhys. Rev. D197818125912671978PhRvD..18.1259M10.1103/PhysRevD.18.1259 – reference: DelfinoGMussardoGThe spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = TCNucl. Phys. B19954557247581995NuPhB.455..724D0925.8204210.1016/0550-3213(95)00464-4 – reference: HalimehJCZauner-StauberVDynamical phase diagram of spin chains with long-range interactionsPhys. Rev. B2017961344272017PhRvB..96m4427H10.1103/PhysRevB.96.134427 – reference: EsslerFHLKehreinSManmanaSRRobinsonNJQuench dynamics in a model with tuneable integrability breakingPhys. Rev. B2014891651042014PhRvB..89p5104E10.1103/PhysRevB.89.165104 – reference: Borla, U., Verresen, R., Grusdt, F. & Moroz, S. Confined phases of one-dimensional spinless fermions coupled to Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Bbb{Z}}_2$$\end{document} gauge theory. Phys. Rev. Lett.124, 120503 (2020). – reference: LeroseAŽunkovičBSilvaAGambassiAQuasilocal excitations induced by long-range interactions in translationally invariant quantum spin chainsPhys. Rev. B2019991211122019PhRvB..99l1112L10.1103/PhysRevB.99.121112 |
SSID | ssj0042613 |
Score | 2.5999846 |
Snippet | Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in... Not provided. |
SourceID | osti proquest springer |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 742 |
SubjectTerms | 639/766/119 639/766/36 639/766/483/3926 Atomic Chains Classical and Continuum Physics Complex Systems Condensed Matter Physics Confinement Domain walls Elementary excitations Excitation Ising model Magnetic domains Mathematical and Computational Physics Mesons Molecular Optical and Plasma Physics Particle physics Physics Physics and Astronomy Quarks Simulation Simulators Theoretical Thermalization (energy absorption) |
Title | Domain-wall confinement and dynamics in a quantum simulator |
URI | https://link.springer.com/article/10.1038/s41567-021-01194-3 https://www.proquest.com/docview/2539397505 https://www.osti.gov/biblio/1853152 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ohuBF_Ilzc-Tg0WC7pE2CB9l0cwgOkQneSpomILhW7Yb_vi9dy9CD1wZ6-F773ve9vB8AF6kySqOfo8pwQTkTjkrFY2qrfj0k0Jb53uHHWTx94Q-v0WudcCvrssrGJ1aOOiuMz5FfDSKmMHZiwL75-KR-a5S_Xa1XaGxDG12wRPHVHo1nT8-NL_b6gK1bIiM64ILVbTMBk1elly6C-hIFP_eMU4ZeucD_6hfX_HM9WkWdyT7s1XSRDNf2PYAtmx_CTlW2acojuL4rFijt6bd-fyeobB1yRp_uIzrPSLZeNl-St5xo8rlCDFcLUr4t_Mau4usY5pPx_HZK63UItEAZtqRyIGIbKJmlQnOdScudShFm6ZwITZyxkBudBakxKrKRNVY7ZVUoY5MyjTztBFp5kdtTIE44i8THOD-bPWVMiyANBT4KdYyET3eg64FIMAj7SbLGl9yYZeJDO4b7DvQafJL6gy-TjXk6cNlgtjmurrqZTNagJwh6UoGesLP_39aF3UFlIp_36EFr-bWy50gDlmkftuXkvg_t4WQ0mvVry_8A1-CxPQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB5CSmkvIX2EbjZtdGhuFVlbsiURSilNtpvnaQO5CVmWYCFrJ_EuS35U_2Nm7DWhPfSWqw3GfPP6RpoHwNfCeOPQz3HjpeJSqMi1kTkPbb8eEuggqHf48iqfXMuzm-xmA_70vTBUVtn7xNZRl7WnM_LDNBMGYycG7B9395y2RtHtar9Co1OL8_C4wpSt-X56jPI9SNPxyfTXhK-3CvAas5kF16nKw8joslBOulIHGU2Bf6tjVInPS5FI78pR4b3JQhZ8cNEEk-jcF8IlNHsJPf4rKYQhg9Lj373jp2REdP2XGU-lEusenZHQhw3lSYpTPQQNWZNcYAio0Yj_Irb_3MW2IW68DVtrbsp-dsr0DjZC9R5etzWivvkAR8f13M0qvnK3twzT6IgElc4WmatKVnab7Rs2q5hj90sU2HLOmtmc1oPVDx9h-hIo7cBmVVfhE7CoYkCW5SMNgi-EcGpUJAofJS5HdukGMCQgLEZ8Glvrqb7HLyzxCOQWA9jr8bFr62rssy4M4FuP2fPr9l5daNuBbhF024Juxe7_v7YPbybTywt7cXp1PoS3aSsuOnDZg83FwzJ8Rv6xKL60UmdgX1jLngBAI-vl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS9xAEB_kxNKXYm1Lr9q6D_atyyXZTTaLSGl7HlrbQ4oF35bNZhcOvETNHeKf5n_XmXwg7UPffE0ghN_Mzvxmdj4ADgrttEU7x7WTikuhAs-1zLhv-_WQQHtBvcM_59nJb_n9Mr3cgIehF4bKKgeb2BrqsnaUI58kqdDoO9FhT0JfFnE-nX2-vuG0QYpuWod1Gp2KnPn7OwzfmqPTKcr6Y5LMji--nfB-wwCvMbJZ8TxRmY90XhbKSlvmXgZd4J_nIajYZaWIpbNlVDinU596523QXsd55gphY5rDhNZ_U2FQFI1g8-vx_PzX4AYoNBFdN2bKE6lE37ETiXzSUNSkOFVH0Mg1yQU6hBqP9F8095-b2dbhzbbhRc9U2ZdOtV7Chq92YKutGHXNKzic1ku7qPidvbpiGFQHpKuUaWS2KlnZ7blv2KJilt2sUXzrJWsWS1oWVt--hounwOkNjKq68m-BBRU8ci4XaCx8IYRVURErfBTbDLmmHcMuAWHQ_9MQW0fVPm5liFUg0xjD3oCP6c9aYx41YwyfBsweX7e37CI3HegGQTct6Ea8-__X9uEZapj5cTo_24XnSSstyr7swWh1u_bvkYysig-92BmYJ1a0P_3W8Xc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-wall+confinement+and+dynamics+in+a+quantum+simulator&rft.jtitle=Nature+physics&rft.au=Tan%2C+W+L&rft.au=Becker%2C+P&rft.au=Liu%2C+F&rft.au=Pagano%2C+G&rft.date=2021-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=17&rft.issue=6&rft.spage=742&rft.epage=747&rft_id=info:doi/10.1038%2Fs41567-021-01194-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |