Domain-wall confinement and dynamics in a quantum simulator

Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in particle physics, in which baryons and mesons are produced by quark confinement. Confinement can also occur in low-energy quantum many-body...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 17; no. 6; pp. 742 - 747
Main Authors Tan, W. L., Becker, P., Liu, F., Pagano, G., Collins, K. S., De, A., Feng, L., Kaplan, H. B., Kyprianidis, A., Lundgren, R., Morong, W., Whitsitt, S., Gorshkov, A. V., Monroe, C.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2021
Nature Publishing Group
Nature Publishing Group (NPG)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in particle physics, in which baryons and mesons are produced by quark confinement. Confinement can also occur in low-energy quantum many-body systems when elementary excitations are confined into bound quasiparticles. Here we report the observation of magnetic domain-wall confinement in interacting spin chains with a trapped-ion quantum simulator. By measuring how correlations spread, we show that confinement can suppress information propagation and thermalization in such many-body systems. We quantitatively determine the excitation energy of domain-wall bound states from the non-equilibrium quench dynamics. We also study the number of domain-wall excitations created for different quench parameters, in a regime that is difficult to model with classical computers. This work demonstrates the capability of quantum simulators for investigating high-energy physics phenomena, such as quark collision and string breaking. Long-range Ising interactions present in one-dimensional spin chains can induce a confining potential between pairs of domain walls, slowing down the thermalization of the system. This has now been observed in a trapped-ion quantum simulator.
AbstractList Not provided.
Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in particle physics, in which baryons and mesons are produced by quark confinement. Confinement can also occur in low-energy quantum many-body systems when elementary excitations are confined into bound quasiparticles. Here we report the observation of magnetic domain-wall confinement in interacting spin chains with a trapped-ion quantum simulator. By measuring how correlations spread, we show that confinement can suppress information propagation and thermalization in such many-body systems. We quantitatively determine the excitation energy of domain-wall bound states from the non-equilibrium quench dynamics. We also study the number of domain-wall excitations created for different quench parameters, in a regime that is difficult to model with classical computers. This work demonstrates the capability of quantum simulators for investigating high-energy physics phenomena, such as quark collision and string breaking.Long-range Ising interactions present in one-dimensional spin chains can induce a confining potential between pairs of domain walls, slowing down the thermalization of the system. This has now been observed in a trapped-ion quantum simulator.
Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in particle physics, in which baryons and mesons are produced by quark confinement. Confinement can also occur in low-energy quantum many-body systems when elementary excitations are confined into bound quasiparticles. Here we report the observation of magnetic domain-wall confinement in interacting spin chains with a trapped-ion quantum simulator. By measuring how correlations spread, we show that confinement can suppress information propagation and thermalization in such many-body systems. We quantitatively determine the excitation energy of domain-wall bound states from the non-equilibrium quench dynamics. We also study the number of domain-wall excitations created for different quench parameters, in a regime that is difficult to model with classical computers. This work demonstrates the capability of quantum simulators for investigating high-energy physics phenomena, such as quark collision and string breaking. Long-range Ising interactions present in one-dimensional spin chains can induce a confining potential between pairs of domain walls, slowing down the thermalization of the system. This has now been observed in a trapped-ion quantum simulator.
Author Tan, W. L.
Monroe, C.
Whitsitt, S.
Lundgren, R.
De, A.
Feng, L.
Morong, W.
Kaplan, H. B.
Gorshkov, A. V.
Becker, P.
Collins, K. S.
Kyprianidis, A.
Pagano, G.
Liu, F.
Author_xml – sequence: 1
  givenname: W. L.
  orcidid: 0000-0003-2353-2678
  surname: Tan
  fullname: Tan, W. L.
  email: wltan93@terpmail.umd.edu
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 2
  givenname: P.
  orcidid: 0000-0002-7786-9447
  surname: Becker
  fullname: Becker, P.
  email: pbecker1@terpmail.umd.edu
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 3
  givenname: F.
  surname: Liu
  fullname: Liu, F.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 4
  givenname: G.
  orcidid: 0000-0002-6760-4015
  surname: Pagano
  fullname: Pagano, G.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST, Department of Physics and Astronomy, Rice University
– sequence: 5
  givenname: K. S.
  orcidid: 0000-0002-6159-8013
  surname: Collins
  fullname: Collins, K. S.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 6
  givenname: A.
  surname: De
  fullname: De, A.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 7
  givenname: L.
  surname: Feng
  fullname: Feng, L.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 8
  givenname: H. B.
  surname: Kaplan
  fullname: Kaplan, H. B.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 9
  givenname: A.
  orcidid: 0000-0002-7751-0100
  surname: Kyprianidis
  fullname: Kyprianidis, A.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 10
  givenname: R.
  surname: Lundgren
  fullname: Lundgren, R.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 11
  givenname: W.
  orcidid: 0000-0003-4880-8159
  surname: Morong
  fullname: Morong, W.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 12
  givenname: S.
  surname: Whitsitt
  fullname: Whitsitt, S.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 13
  givenname: A. V.
  orcidid: 0000-0003-0509-3421
  surname: Gorshkov
  fullname: Gorshkov, A. V.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
– sequence: 14
  givenname: C.
  surname: Monroe
  fullname: Monroe, C.
  organization: Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST
BackLink https://www.osti.gov/biblio/1853152$$D View this record in Osti.gov
BookMark eNpFkEtLxDAYRYOM4Iz6B1wVXUfz5dEmuJLxCQNuZh_SNNUMbTLTpIj_3mpFV_cuDpfLWaFFiMEhdAHkGgiTN4mDKCtMKGACoDhmR2gJFReYcgmLv16xE7RKaUcIpyWwJbq9j73xAX-YritsDK0PrnchFyY0RfMZTO9tKnwoTHEYTchjXyTfj53JcThDx63pkjv_zVO0fXzYrp_x5vXpZX23wREkz1jSqnREyaauDDeNdLxVNadKtm0FtmwYcGsaUlurhBPOOtMqp0CWtmYGFDtFl_NsTNnrZH129n26GpzNGqRgIOgEXc3QfoiH0aWsd3EcwnRLU8EUU5UgYqLYTKX94MObG_4pIPrbpJ5N6smk_jGpGfsC8p1oEw
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021.
CorporateAuthor Univ. of California, Oakland, CA (United States)
Duke Univ., Durham, NC (United States)
CorporateAuthor_xml – name: Univ. of California, Oakland, CA (United States)
– name: Duke Univ., Durham, NC (United States)
DBID 3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
OTOTI
DOI 10.1038/s41567-021-01194-3
DatabaseName ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
OSTI.GOV
DatabaseTitle ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 747
ExternalDocumentID 1853152
10_1038_s41567_021_01194_3
GrantInformation_xml – fundername: This work is supported by the NSF PFCQC STAQ program, the AFOSR MURIs on Quantum Measurement/Verification, the ARO MURI on Modular Quantum Systems, the AFOSR and ARO QIS and AMO Programs, the DARPA DRINQS program, the DOE BES award DE-SC0019449, and the DOE HEP award DE-SC0019380, the NSF QIS program. Fangli Liu is supported by Ann G.Wylie Dissertation Fellowship of University of Maryland
– fundername: This work is supported by the NSF PFCQC STAQ program, the AFOSR MURIs on Quantum Measurement/Verification, the ARO MURI on Modular Quantum Systems, the AFOSR and ARO QIS and AMO Programs, the DARPA DRINQS program, the DOE BES award DE-SC0019449, and the DOE HEP award DE-SC0019380, the NSF QIS program.
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
7U5
7XB
8FD
8FK
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
L7M
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-o184t-8276e098db7a4ad8e4f9b4298ff71c6d314cad0bcc95e5eceaf9e9186cb3a193
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Fri May 19 00:47:23 EDT 2023
Sat Aug 16 19:52:42 EDT 2025
Fri Feb 21 02:37:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-o184t-8276e098db7a4ad8e4f9b4298ff71c6d314cad0bcc95e5eceaf9e9186cb3a193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0019380; SC0019449
USDOE Office of Science (SC)
ORCID 0000-0003-4880-8159
0000-0003-2353-2678
0000-0003-0509-3421
0000-0002-6159-8013
0000-0002-7786-9447
0000-0002-6760-4015
0000-0002-7751-0100
0000000277869447
0000000261598013
0000000323532678
0000000348808159
0000000305093421
0000000277510100
0000000267604015
PQID 2539397505
PQPubID 27545
PageCount 6
ParticipantIDs osti_scitechconnect_1853152
proquest_journals_2539397505
springer_journals_10_1038_s41567_021_01194_3
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group (NPG)
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Publishing Group (NPG)
References MachadoFElseDVKahanamoku-MeyerGDNayakCYaoNYLong-range prethermal phases of nonequilibrium matterPhys. Rev. X202010011043
ZhangJObservation of a many-body dynamical phase transition with a 53-qubit quantum simulatorNature20175516016042017Natur.551..601Z10.1038/nature24654
LeroseAŽunkovičBSilvaAGambassiAQuasilocal excitations induced by long-range interactions in translationally invariant quantum spin chainsPhys. Rev. B2019991211122019PhRvB..99l1112L10.1103/PhysRevB.99.121112
JamesAJAKonikRMRobinsonNJNonthermal states arising from confinement in one and two dimensionsPhy. Rev. Lett.20191221306032019PhRvL.122m0603J10.1103/PhysRevLett.122.130603
GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861531852014RvMP...86..153G10.1103/RevModPhys.86.153
SantosLFBorgonoviFCelardoGLCooperative shielding in many-body systems with long-range interactionPhys. Rev. Lett.20161162504022016PhRvL.116y0402S10.1103/PhysRevLett.116.250402
TranMCLocality and heating in periodically driven, power-law interacting systemsPhys. Rev. A20191000521032019PhRvA.100e2103T10.1103/PhysRevA.100.052103
HessPWNon-thermalization in trapped atomic ion spin chainsPhil. Trans. R. Soc. A2017375201701072017RSPTA.37570107H10.1098/rsta.2017.0107
MazzaPPPerfettoGLeroseAColluraMGambassiASuppression of transport in nondisordered quantum spin chains due to confined excitationsPhys. Rev. B2019991803022019PhRvB..99r0302M10.1103/PhysRevB.99.180302
KormosMColluraMTakácsGCalabresePReal-time confinement following a quantum quench to a non-integrable modelNat. Phys.20171324624910.1038/nphys3934
BrambillaNQCD and strongly coupled gauge theories: challenges and perspectivesEur. Phys. J. C201474298110.1140/epjc/s10052-014-2981-5
LeroseAQuasilocalized dynamics from confinement of quantum excitationsPhys. Rev. B20201020411182020PhRvB.102d1118L416219710.1103/PhysRevB.102.041118
Joseph WangC-CFreericksJKIntrinsic phonon effects on analog quantum simulators with ultracold trapped ionsPhys. Rev. A2012860323292012PhRvA..86c2329W10.1103/PhysRevA.86.032329
EisertJFriesdorfMGogolinCQuantum many-body systems out of equilibriumNat. Phys.20151112413010.1038/nphys3215
MølmerKSørensenAMultiparticle entanglement of hot trapped ionsPhys. Rev. Lett.199982183518381999PhRvL..82.1835M10.1103/PhysRevLett.82.1835
MuschikCU(1) Wilson lattice gauge theories in digital quantum simulatorsNew J. Phys.2017191030202017NJPh...19j3020M10.1088/1367-2630/aa89ab
BohnetJGQuantum spin dynamics and entanglement generation with hundreds of trapped ionsScience2016352129713012016Sci...352.1297B35607621355.8118110.1126/science.aad9958
ColdeaRQuantum criticality in an Ising chain: experimental evidence for emergent E8 symmetryScience20103271771802010Sci...327..177C10.1126/science.1180085
CheneauMLight-cone-like spreading of correlations in a quantum many-body systemNature20124814844872012Natur.481..484C10.1038/nature10748
Calabrese, P., Essler, F.H.L. & Fagotti, M. Quantum quenches in the transverse field Ising chain: II. Stationary state properties. J. Stat. Mech. 2012, P07022 (2012).
NandkishoreRHuseDAMany-body localization and thermalization in quantum statistical mechanicsAnnu. Rev. Condens. Matter Phys.2015615382015ARCMP...6...15N10.1146/annurev-conmatphys-031214-014726
SchachenmayerJLanyonBPRoosCFDaleyAJEntanglement growth in quench dynamics with variable range interactionsPhys. Rev. X20133031015
GörgFRealization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matterNat. Phys.2019151161116710.1038/s41567-019-0615-4
LeeACEngineering large Stark shifts for control of individual clock state qubitsPhys. Rev. A2016940423082016PhRvA..94d2308L10.1103/PhysRevA.94.042308
Wu, Y. Quantum Computation in Large Ion Crystals. PhD thesis, Univ. Michigan (2019).
NeyenhuisBObservation of prethermalization in long-range interacting spin chainsSci. Adv.20173e17006722017SciA....3E0672N10.1126/sciadv.1700672
McCoyBMWuTTTwo-dimensional Ising field theory in a magnetic field: breakup of the cut in the two-point functionPhys. Rev. D197818125912671978PhRvD..18.1259M10.1103/PhysRevD.18.1259
BañulsMCSimulating lattice gauge theories within quantum technologiesEur. Phys. J. D2020742020EPJD...74..165B10.1140/epjd/e2020-100571-8
del CampoAZurekWHUniversality of phase transition dynamics: topological defects from symmetry breakingInt. J. Mod. Phys. A201429143001810.1142/S0217751X1430018X
DelfinoGMussardoGThe spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = TCNucl. Phys. B19954557247581995NuPhB.455..724D0925.8204210.1016/0550-3213(95)00464-4
KimKEntanglement and tunable spin-spin couplings between trapped ions using multiple transverse modesPhys. Rev. Lett.20091031205022009PhRvL.103l0502K10.1103/PhysRevLett.103.120502
Greensite, J. An Introduction to the Confinement Problem 1–2 (Springer, 2011).
VerdelRLiuFWhitsittSGorshkovAVHeylMReal-time dynamics of string breaking in quantum spin chainsPhys. Rev. B20201020143082020PhRvB.102a4308V10.1103/PhysRevB.102.014308
BrenesMDalmonteMHeylMScardicchioAMany-body localization dynamics from gauge invariancePhys. Rev. Lett.20181200306012018PhRvL.120c0601B375813310.1103/PhysRevLett.120.030601
Fonseca, P. & Zamolodchikov, A. Ising spectroscopy I: mesons at T < TC. Preprint at https://arxiv.org/abs/hep-th/0612304 (2006).
JurcevicPDirect observation of dynamical quantum phase transitions in an interacting many-body systemPhys. Rev. Lett.20171190805012017PhRvL.119h0501J10.1103/PhysRevLett.119.080501
LiuFConfined quasiparticle dynamics in long-range interacting quantum spin chainsPhys. Rev. Lett.20191221506012019PhRvL.122o0601L10.1103/PhysRevLett.122.150601
Borla, U., Verresen, R., Grusdt, F. & Moroz, S. Confined phases of one-dimensional spinless fermions coupled to Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Bbb{Z}}_2$$\end{document} gauge theory. Phys. Rev. Lett.124, 120503 (2020).
SchweizerCFloquet approach to Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}_2$$\end{document} lattice gauge theories with ultracold atoms in optical latticesNat. Phys.2019151168117310.1038/s41567-019-0649-7
EsslerFHLKehreinSManmanaSRRobinsonNJQuench dynamics in a model with tuneable integrability breakingPhys. Rev. B2014891651042014PhRvB..89p5104E10.1103/PhysRevB.89.165104
HalimehJCPrethermalization and persistent order in the absence of a thermal phase transitionPhys. Rev. B2017950243022017PhRvB..95b4302H10.1103/PhysRevB.95.024302
FeynmanRPSimulating physics with computersInt. J. Theor. Phys.19822146748865831110.1007/BF02650179
ŽunkovičBHeylMKnapMSilvaADynamical quantum phase transitions in spin chains with long-range interactions: merging different concepts of nonequilibrium criticalityPhys. Rev. Lett.20181201306012018PhRvL.120m0601Z10.1103/PhysRevLett.120.130601
SchreiberMObservation of many-body localization of interacting fermions in a quasirandom optical latticeScience20153498428452015Sci...349..842S34097231355.8117910.1126/science.aaa7432
HalimehJCZauner-StauberVDynamical phase diagram of spin chains with long-range interactionsPhys. Rev. B2017961344272017PhRvB..96m4427H10.1103/PhysRevB.96.134427
LakeBConfinement of fractional quantum number particles in a condensed-matter systemNat. Phys.20106505510.1038/nphys1462
Magnifico, G. et al. Real time dynamics and confinement in the Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Bbb{Z}}}_{n}$$\end{document} Schwinger–Weyl lattice model for 1+1 QED. Quantum4, 281 (2020).
Vovrosh, J. & Knolle, J. Confinement dynamics on a digital quantum computer. Preprint at https://arxiv.org/abs/2001.03044 (2020).
CalabresePCardyJTime dependence of correlation functions following a quantum quenchPhys. Rev. Lett.2006961368012006PhRvL..96m6801C10.1103/PhysRevLett.96.136801
BañulsMCCiracJIHastingsMBStrong and weak thermalization of infinite nonintegrable quantum systemsPhys. Rev. Lett.20111060504052011PhRvL.106e0405B10.1103/PhysRevLett.106.050405
PaganoGCryogenic trapped-ion system for large scale quantum simulationQuantum Sci. Technol.201840140042019QS&T....4a4004P10.1088/2058-9565/aae0fe
AbaninDRoeckWDHoWWHuveneersFA rigorous theory of many-body prethermalization for periodically driven and closed quantum systemsCommun. Math. Phys.20173548098272017CMaPh.354..809A36686101370.8122610.1007/s00220-017-2930-x
WinelandDJExperimental issues in coherent quantum-state manipulation of trapped atomic ionsJ. Res. Natl Inst. Stand. Technol.199810325932810.6028/jres.103.019
PorrasDCiracJIEffective spin systems with trapped ionsPhys. Rev. Lett.2004922079012004PhRvL..92t7901P10.1103/PhysRevLett.92.207901
MilAA scalable realization of local U(1) gauge invariance in cold atomic mixturesScience2020367112811302020Sci...367.1128M10.1126/science.aaz5312
References_xml – reference: WinelandDJExperimental issues in coherent quantum-state manipulation of trapped atomic ionsJ. Res. Natl Inst. Stand. Technol.199810325932810.6028/jres.103.019
– reference: JamesAJAKonikRMRobinsonNJNonthermal states arising from confinement in one and two dimensionsPhy. Rev. Lett.20191221306032019PhRvL.122m0603J10.1103/PhysRevLett.122.130603
– reference: TranMCLocality and heating in periodically driven, power-law interacting systemsPhys. Rev. A20191000521032019PhRvA.100e2103T10.1103/PhysRevA.100.052103
– reference: Greensite, J. An Introduction to the Confinement Problem 1–2 (Springer, 2011).
– reference: KormosMColluraMTakácsGCalabresePReal-time confinement following a quantum quench to a non-integrable modelNat. Phys.20171324624910.1038/nphys3934
– reference: SantosLFBorgonoviFCelardoGLCooperative shielding in many-body systems with long-range interactionPhys. Rev. Lett.20161162504022016PhRvL.116y0402S10.1103/PhysRevLett.116.250402
– reference: GeorgescuIMAshhabSNoriFQuantum simulationRev. Mod. Phys.2014861531852014RvMP...86..153G10.1103/RevModPhys.86.153
– reference: KimKEntanglement and tunable spin-spin couplings between trapped ions using multiple transverse modesPhys. Rev. Lett.20091031205022009PhRvL.103l0502K10.1103/PhysRevLett.103.120502
– reference: ColdeaRQuantum criticality in an Ising chain: experimental evidence for emergent E8 symmetryScience20103271771802010Sci...327..177C10.1126/science.1180085
– reference: MilAA scalable realization of local U(1) gauge invariance in cold atomic mixturesScience2020367112811302020Sci...367.1128M10.1126/science.aaz5312
– reference: NeyenhuisBObservation of prethermalization in long-range interacting spin chainsSci. Adv.20173e17006722017SciA....3E0672N10.1126/sciadv.1700672
– reference: MølmerKSørensenAMultiparticle entanglement of hot trapped ionsPhys. Rev. Lett.199982183518381999PhRvL..82.1835M10.1103/PhysRevLett.82.1835
– reference: PorrasDCiracJIEffective spin systems with trapped ionsPhys. Rev. Lett.2004922079012004PhRvL..92t7901P10.1103/PhysRevLett.92.207901
– reference: JurcevicPDirect observation of dynamical quantum phase transitions in an interacting many-body systemPhys. Rev. Lett.20171190805012017PhRvL.119h0501J10.1103/PhysRevLett.119.080501
– reference: GörgFRealization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matterNat. Phys.2019151161116710.1038/s41567-019-0615-4
– reference: Joseph WangC-CFreericksJKIntrinsic phonon effects on analog quantum simulators with ultracold trapped ionsPhys. Rev. A2012860323292012PhRvA..86c2329W10.1103/PhysRevA.86.032329
– reference: EisertJFriesdorfMGogolinCQuantum many-body systems out of equilibriumNat. Phys.20151112413010.1038/nphys3215
– reference: del CampoAZurekWHUniversality of phase transition dynamics: topological defects from symmetry breakingInt. J. Mod. Phys. A201429143001810.1142/S0217751X1430018X
– reference: CalabresePCardyJTime dependence of correlation functions following a quantum quenchPhys. Rev. Lett.2006961368012006PhRvL..96m6801C10.1103/PhysRevLett.96.136801
– reference: NandkishoreRHuseDAMany-body localization and thermalization in quantum statistical mechanicsAnnu. Rev. Condens. Matter Phys.2015615382015ARCMP...6...15N10.1146/annurev-conmatphys-031214-014726
– reference: LeroseAQuasilocalized dynamics from confinement of quantum excitationsPhys. Rev. B20201020411182020PhRvB.102d1118L416219710.1103/PhysRevB.102.041118
– reference: FeynmanRPSimulating physics with computersInt. J. Theor. Phys.19822146748865831110.1007/BF02650179
– reference: VerdelRLiuFWhitsittSGorshkovAVHeylMReal-time dynamics of string breaking in quantum spin chainsPhys. Rev. B20201020143082020PhRvB.102a4308V10.1103/PhysRevB.102.014308
– reference: HessPWNon-thermalization in trapped atomic ion spin chainsPhil. Trans. R. Soc. A2017375201701072017RSPTA.37570107H10.1098/rsta.2017.0107
– reference: HalimehJCPrethermalization and persistent order in the absence of a thermal phase transitionPhys. Rev. B2017950243022017PhRvB..95b4302H10.1103/PhysRevB.95.024302
– reference: MuschikCU(1) Wilson lattice gauge theories in digital quantum simulatorsNew J. Phys.2017191030202017NJPh...19j3020M10.1088/1367-2630/aa89ab
– reference: Calabrese, P., Essler, F.H.L. & Fagotti, M. Quantum quenches in the transverse field Ising chain: II. Stationary state properties. J. Stat. Mech. 2012, P07022 (2012).
– reference: SchreiberMObservation of many-body localization of interacting fermions in a quasirandom optical latticeScience20153498428452015Sci...349..842S34097231355.8117910.1126/science.aaa7432
– reference: BrenesMDalmonteMHeylMScardicchioAMany-body localization dynamics from gauge invariancePhys. Rev. Lett.20181200306012018PhRvL.120c0601B375813310.1103/PhysRevLett.120.030601
– reference: SchachenmayerJLanyonBPRoosCFDaleyAJEntanglement growth in quench dynamics with variable range interactionsPhys. Rev. X20133031015
– reference: BohnetJGQuantum spin dynamics and entanglement generation with hundreds of trapped ionsScience2016352129713012016Sci...352.1297B35607621355.8118110.1126/science.aad9958
– reference: LeeACEngineering large Stark shifts for control of individual clock state qubitsPhys. Rev. A2016940423082016PhRvA..94d2308L10.1103/PhysRevA.94.042308
– reference: BrambillaNQCD and strongly coupled gauge theories: challenges and perspectivesEur. Phys. J. C201474298110.1140/epjc/s10052-014-2981-5
– reference: Fonseca, P. & Zamolodchikov, A. Ising spectroscopy I: mesons at T < TC. Preprint at https://arxiv.org/abs/hep-th/0612304 (2006).
– reference: ŽunkovičBHeylMKnapMSilvaADynamical quantum phase transitions in spin chains with long-range interactions: merging different concepts of nonequilibrium criticalityPhys. Rev. Lett.20181201306012018PhRvL.120m0601Z10.1103/PhysRevLett.120.130601
– reference: LakeBConfinement of fractional quantum number particles in a condensed-matter systemNat. Phys.20106505510.1038/nphys1462
– reference: LiuFConfined quasiparticle dynamics in long-range interacting quantum spin chainsPhys. Rev. Lett.20191221506012019PhRvL.122o0601L10.1103/PhysRevLett.122.150601
– reference: Magnifico, G. et al. Real time dynamics and confinement in the Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Bbb{Z}}}_{n}$$\end{document} Schwinger–Weyl lattice model for 1+1 QED. Quantum4, 281 (2020).
– reference: SchweizerCFloquet approach to Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}_2$$\end{document} lattice gauge theories with ultracold atoms in optical latticesNat. Phys.2019151168117310.1038/s41567-019-0649-7
– reference: CheneauMLight-cone-like spreading of correlations in a quantum many-body systemNature20124814844872012Natur.481..484C10.1038/nature10748
– reference: AbaninDRoeckWDHoWWHuveneersFA rigorous theory of many-body prethermalization for periodically driven and closed quantum systemsCommun. Math. Phys.20173548098272017CMaPh.354..809A36686101370.8122610.1007/s00220-017-2930-x
– reference: MazzaPPPerfettoGLeroseAColluraMGambassiASuppression of transport in nondisordered quantum spin chains due to confined excitationsPhys. Rev. B2019991803022019PhRvB..99r0302M10.1103/PhysRevB.99.180302
– reference: Wu, Y. Quantum Computation in Large Ion Crystals. PhD thesis, Univ. Michigan (2019).
– reference: ZhangJObservation of a many-body dynamical phase transition with a 53-qubit quantum simulatorNature20175516016042017Natur.551..601Z10.1038/nature24654
– reference: BañulsMCSimulating lattice gauge theories within quantum technologiesEur. Phys. J. D2020742020EPJD...74..165B10.1140/epjd/e2020-100571-8
– reference: BañulsMCCiracJIHastingsMBStrong and weak thermalization of infinite nonintegrable quantum systemsPhys. Rev. Lett.20111060504052011PhRvL.106e0405B10.1103/PhysRevLett.106.050405
– reference: MachadoFElseDVKahanamoku-MeyerGDNayakCYaoNYLong-range prethermal phases of nonequilibrium matterPhys. Rev. X202010011043
– reference: Vovrosh, J. & Knolle, J. Confinement dynamics on a digital quantum computer. Preprint at https://arxiv.org/abs/2001.03044 (2020).
– reference: PaganoGCryogenic trapped-ion system for large scale quantum simulationQuantum Sci. Technol.201840140042019QS&T....4a4004P10.1088/2058-9565/aae0fe
– reference: McCoyBMWuTTTwo-dimensional Ising field theory in a magnetic field: breakup of the cut in the two-point functionPhys. Rev. D197818125912671978PhRvD..18.1259M10.1103/PhysRevD.18.1259
– reference: DelfinoGMussardoGThe spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = TCNucl. Phys. B19954557247581995NuPhB.455..724D0925.8204210.1016/0550-3213(95)00464-4
– reference: HalimehJCZauner-StauberVDynamical phase diagram of spin chains with long-range interactionsPhys. Rev. B2017961344272017PhRvB..96m4427H10.1103/PhysRevB.96.134427
– reference: EsslerFHLKehreinSManmanaSRRobinsonNJQuench dynamics in a model with tuneable integrability breakingPhys. Rev. B2014891651042014PhRvB..89p5104E10.1103/PhysRevB.89.165104
– reference: Borla, U., Verresen, R., Grusdt, F. & Moroz, S. Confined phases of one-dimensional spinless fermions coupled to Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Bbb{Z}}_2$$\end{document} gauge theory. Phys. Rev. Lett.124, 120503 (2020).
– reference: LeroseAŽunkovičBSilvaAGambassiAQuasilocal excitations induced by long-range interactions in translationally invariant quantum spin chainsPhys. Rev. B2019991211122019PhRvB..99l1112L10.1103/PhysRevB.99.121112
SSID ssj0042613
Score 2.5999846
Snippet Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in...
Not provided.
SourceID osti
proquest
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 742
SubjectTerms 639/766/119
639/766/36
639/766/483/3926
Atomic
Chains
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Confinement
Domain walls
Elementary excitations
Excitation
Ising model
Magnetic domains
Mathematical and Computational Physics
Mesons
Molecular
Optical and Plasma Physics
Particle physics
Physics
Physics and Astronomy
Quarks
Simulation
Simulators
Theoretical
Thermalization (energy absorption)
Title Domain-wall confinement and dynamics in a quantum simulator
URI https://link.springer.com/article/10.1038/s41567-021-01194-3
https://www.proquest.com/docview/2539397505
https://www.osti.gov/biblio/1853152
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ohuBF_Ilzc-Tg0WC7pE2CB9l0cwgOkQneSpomILhW7Yb_vi9dy9CD1wZ6-F773ve9vB8AF6kySqOfo8pwQTkTjkrFY2qrfj0k0Jb53uHHWTx94Q-v0WudcCvrssrGJ1aOOiuMz5FfDSKmMHZiwL75-KR-a5S_Xa1XaGxDG12wRPHVHo1nT8-NL_b6gK1bIiM64ILVbTMBk1elly6C-hIFP_eMU4ZeucD_6hfX_HM9WkWdyT7s1XSRDNf2PYAtmx_CTlW2acojuL4rFijt6bd-fyeobB1yRp_uIzrPSLZeNl-St5xo8rlCDFcLUr4t_Mau4usY5pPx_HZK63UItEAZtqRyIGIbKJmlQnOdScudShFm6ZwITZyxkBudBakxKrKRNVY7ZVUoY5MyjTztBFp5kdtTIE44i8THOD-bPWVMiyANBT4KdYyET3eg64FIMAj7SbLGl9yYZeJDO4b7DvQafJL6gy-TjXk6cNlgtjmurrqZTNagJwh6UoGesLP_39aF3UFlIp_36EFr-bWy50gDlmkftuXkvg_t4WQ0mvVry_8A1-CxPQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB5CSmkvIX2EbjZtdGhuFVlbsiURSilNtpvnaQO5CVmWYCFrJ_EuS35U_2Nm7DWhPfSWqw3GfPP6RpoHwNfCeOPQz3HjpeJSqMi1kTkPbb8eEuggqHf48iqfXMuzm-xmA_70vTBUVtn7xNZRl7WnM_LDNBMGYycG7B9395y2RtHtar9Co1OL8_C4wpSt-X56jPI9SNPxyfTXhK-3CvAas5kF16nKw8joslBOulIHGU2Bf6tjVInPS5FI78pR4b3JQhZ8cNEEk-jcF8IlNHsJPf4rKYQhg9Lj373jp2REdP2XGU-lEusenZHQhw3lSYpTPQQNWZNcYAio0Yj_Irb_3MW2IW68DVtrbsp-dsr0DjZC9R5etzWivvkAR8f13M0qvnK3twzT6IgElc4WmatKVnab7Rs2q5hj90sU2HLOmtmc1oPVDx9h-hIo7cBmVVfhE7CoYkCW5SMNgi-EcGpUJAofJS5HdukGMCQgLEZ8Glvrqb7HLyzxCOQWA9jr8bFr62rssy4M4FuP2fPr9l5daNuBbhF024Juxe7_v7YPbybTywt7cXp1PoS3aSsuOnDZg83FwzJ8Rv6xKL60UmdgX1jLngBAI-vl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS9xAEB_kxNKXYm1Lr9q6D_atyyXZTTaLSGl7HlrbQ4oF35bNZhcOvETNHeKf5n_XmXwg7UPffE0ghN_Mzvxmdj4ADgrttEU7x7WTikuhAs-1zLhv-_WQQHtBvcM_59nJb_n9Mr3cgIehF4bKKgeb2BrqsnaUI58kqdDoO9FhT0JfFnE-nX2-vuG0QYpuWod1Gp2KnPn7OwzfmqPTKcr6Y5LMji--nfB-wwCvMbJZ8TxRmY90XhbKSlvmXgZd4J_nIajYZaWIpbNlVDinU596523QXsd55gphY5rDhNZ_U2FQFI1g8-vx_PzX4AYoNBFdN2bKE6lE37ETiXzSUNSkOFVH0Mg1yQU6hBqP9F8095-b2dbhzbbhRc9U2ZdOtV7Chq92YKutGHXNKzic1ku7qPidvbpiGFQHpKuUaWS2KlnZ7blv2KJilt2sUXzrJWsWS1oWVt--hounwOkNjKq68m-BBRU8ci4XaCx8IYRVURErfBTbDLmmHcMuAWHQ_9MQW0fVPm5liFUg0xjD3oCP6c9aYx41YwyfBsweX7e37CI3HegGQTct6Ea8-__X9uEZapj5cTo_24XnSSstyr7swWh1u_bvkYysig-92BmYJ1a0P_3W8Xc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-wall+confinement+and+dynamics+in+a+quantum+simulator&rft.jtitle=Nature+physics&rft.au=Tan%2C+W+L&rft.au=Becker%2C+P&rft.au=Liu%2C+F&rft.au=Pagano%2C+G&rft.date=2021-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=17&rft.issue=6&rft.spage=742&rft.epage=747&rft_id=info:doi/10.1038%2Fs41567-021-01194-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon