Domain-wall confinement and dynamics in a quantum simulator
Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in particle physics, in which baryons and mesons are produced by quark confinement. Confinement can also occur in low-energy quantum many-body...
Saved in:
Published in | Nature physics Vol. 17; no. 6; pp. 742 - 747 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2021
Nature Publishing Group Nature Publishing Group (NPG) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Particles subject to confinement experience an attractive potential that increases without bound as they separate. A prominent example is colour confinement in particle physics, in which baryons and mesons are produced by quark confinement. Confinement can also occur in low-energy quantum many-body systems when elementary excitations are confined into bound quasiparticles. Here we report the observation of magnetic domain-wall confinement in interacting spin chains with a trapped-ion quantum simulator. By measuring how correlations spread, we show that confinement can suppress information propagation and thermalization in such many-body systems. We quantitatively determine the excitation energy of domain-wall bound states from the non-equilibrium quench dynamics. We also study the number of domain-wall excitations created for different quench parameters, in a regime that is difficult to model with classical computers. This work demonstrates the capability of quantum simulators for investigating high-energy physics phenomena, such as quark collision and string breaking.
Long-range Ising interactions present in one-dimensional spin chains can induce a confining potential between pairs of domain walls, slowing down the thermalization of the system. This has now been observed in a trapped-ion quantum simulator. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0019380; SC0019449 USDOE Office of Science (SC) |
ISSN: | 1745-2473 1745-2481 |
DOI: | 10.1038/s41567-021-01194-3 |