Determining the effects of microsphere and surrounding material composition on (90)Y dose kernels using egsnrc and mcnp5

Recent advances in the imaging of (90)Y using positron emission tomography (PET) and improved uncertainty in the branching ratio for the internal pair production component of (90)Y decay allow for a more accurate determination of the activity distribution of (90)Y microspheres within a patient. This...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 39; no. 3; p. 1424
Main Authors Paxton, Adam B, Davis, Stephen D, Dewerd, Larry A
Format Journal Article
LanguageEnglish
Published United States 01.03.2012
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Recent advances in the imaging of (90)Y using positron emission tomography (PET) and improved uncertainty in the branching ratio for the internal pair production component of (90)Y decay allow for a more accurate determination of the activity distribution of (90)Y microspheres within a patient. This improved activity distribution can be convolved with the dose kernel of (90)Y to calculate the dose distribution within a patient. This work investigates the effects of microsphere and surrounding material composition on (90)Y dose kernels using egsnrc and mcnp5 and compares the results of these two transport codes. Monte Carlo simulations were performed with egsnrc and mcnp5 to calculate the dose rate at multiple radial distances around various (90)Y sources. Point source simulations were completed with mcnp5 to determine the optimal electron transport settings for this work. After determining the optimal settings, point source simulations were completed using egsnrc (user code edknrc) and mcnp5 in water and liver [as defined by the International Commission on Radiation Units and Measurements (ICRU) Report 44]. The results were compared to ICRU Report 72 reference data. Point source simulations were also completed in water with a density of 1.06 g[middle dot]cm(-3) to evaluate the effect of the density of the surrounding material. Glass and resin microsphere simulations were performed with average and maximum diameter and density values (based on values given in the literature) in water and in liver. The results were compared to point source simulation results using the same transport code and in the same surrounding material. All simulations had statistical uncertainties less than 1%. The optimal transport settings in mcnp5 for this work included using the energy-and step-specific algorithm (DBCN 17J 2) and ESTEP set to 10. These settings were used for all subsequent simulations with mcnp5. The point source simulations in water for both egsnrc and mcnp5 were found to agree within 2% of the ICRU 72 reference data over the investigated range. Point source simulations in liver had large differences relative to ICRU 72, approaching -60% near the maximum range of (90)Y. These differences are mostly attributed to the difference in density between water (1.0 g[middle dot]cm(-3)) and liver (1.06 g[middle dot]cm(-3)). Glass and resin microsphere simulations showed a slight decrease in the dose rate near the maximum range of (90)Y relative to the point source simulations. The largest relative differences were approximately -4.2% and -2.8% for the glass and resin microspheres, respectively. Agreement between the egsnrc and mcnp5 simulations results was generally good. The presence of the microsphere material causes slight differences in the (90)Y dose kernel compared to those calculated with point sources. Large differences were seen between simulations in water and those in liver. For the most accurate calculation of the dose distribution, the density of the patient's liver should be accounted for in the calculation of the dose kernel. Lastly, due to the need to determine the optimal transport settings with mcnp5, electron transport with this code should be used with caution.
ISSN:0094-2405
DOI:10.1118/1.3685577