감마 분포 GLM을 활용한 고속도로 휴게소 매출액 추정 모형 개발

본 연구에서는 2017-2021년의 전국휴게소 매출액 자료와 OpenAPI 등을 활용하여 원격으로 구득가능한 자료를 활용해 매출액 추정 모형을 구축하고 Bayesian Information Criterion(BIC) 값을 기준으로 모형을 비교한 후2022년 매출액 자료를 사용해 그 성능을 검증하고자 하였다. 관련데이터의 기초 분석을 거친 후 휴게소 면적 관련 변수를 기준으로세 개의 감마 분포 일반화 선형 모형을 구축하고, 각 모형의 검증결과를 토대로 가장 합리적인 매출액 추정 모형을 제시하였다. 이후의 논의는 다음과 같다. 우선 2...

Full description

Saved in:
Bibliographic Details
Published in국토계획 Vol. 59; no. 7; pp. 112 - 122
Main Authors 윤현성(Yun, Hyunseong), 양승호(Yang, Seungho), 김승남(Kim, Seung-Nam)
Format Journal Article
LanguageKorean
Published 대한국토·도시계획학회 01.12.2024
Subjects
Online AccessGet full text
ISSN1226-7147
2383-9171
DOI10.17208/jkpa.2024.12.59.7.112

Cover

Loading…
Abstract 본 연구에서는 2017-2021년의 전국휴게소 매출액 자료와 OpenAPI 등을 활용하여 원격으로 구득가능한 자료를 활용해 매출액 추정 모형을 구축하고 Bayesian Information Criterion(BIC) 값을 기준으로 모형을 비교한 후2022년 매출액 자료를 사용해 그 성능을 검증하고자 하였다. 관련데이터의 기초 분석을 거친 후 휴게소 면적 관련 변수를 기준으로세 개의 감마 분포 일반화 선형 모형을 구축하고, 각 모형의 검증결과를 토대로 가장 합리적인 매출액 추정 모형을 제시하였다. 이후의 논의는 다음과 같다. 우선 2장에서는 휴게소 수요 추정과 관련된 선행연구를 검토하고, 3장에서 분석 방법을 설명한다. 4장에서는 분석과 검증의 결과를 토대로 매출액 추정 모형을 제시하고, 이를 바탕으로 5장에서 결론을 제시한다. Expressway service areas play a crucial role for road safety by addressing users' physiological needs and serving as evacuation sites during emergencies. Accurate revenue estimation is essential for developing appropriate and reasonable operational plans for these areas. However, predicting demand and revenue is challenging due to their unique characteristics: they are accessible only via expressways and are not the final destinations for users. Traditional quantitative methods, such as the gravity model, often fall short in addressing these challenges. Previous studies have proposed revenue estimation models, but they are difficult to apply during the planning stage because they rely on hard-to-obtain variables, such as entry rates and detailed traffic volumes. To address this limitation, this study introduces a new revenue estimation model for expressway service areas that uses easily accessible variables, making it suitable for use during the planning stages. We developed three Gamma-distribution generalized linear models using revenue data from 182 service areas from 2017 to 2021, which yielded Bayesian Information Criterion (BIC) values ranging from 8,001 to 8,226. After evaluating the model’s fit and verifying them with 2022 data, we identified the model with the best performance. Our analysis indicates that variables such as traffic volume, total floor area, express bus transfer service area, and distance to the previous service area positively impact revenue. Conversely, an excessively large gross floor area can negatively affect revenue. The findings from this study are expected to provide valuable insights for planning service areas in future expressway constructions. KCI Citation Count: 0
AbstractList 본 연구에서는 2017-2021년의 전국휴게소 매출액 자료와 OpenAPI 등을 활용하여 원격으로 구득가능한 자료를 활용해 매출액 추정 모형을 구축하고 Bayesian Information Criterion(BIC) 값을 기준으로 모형을 비교한 후2022년 매출액 자료를 사용해 그 성능을 검증하고자 하였다. 관련데이터의 기초 분석을 거친 후 휴게소 면적 관련 변수를 기준으로세 개의 감마 분포 일반화 선형 모형을 구축하고, 각 모형의 검증결과를 토대로 가장 합리적인 매출액 추정 모형을 제시하였다. 이후의 논의는 다음과 같다. 우선 2장에서는 휴게소 수요 추정과 관련된 선행연구를 검토하고, 3장에서 분석 방법을 설명한다. 4장에서는 분석과 검증의 결과를 토대로 매출액 추정 모형을 제시하고, 이를 바탕으로 5장에서 결론을 제시한다. Expressway service areas play a crucial role for road safety by addressing users' physiological needs and serving as evacuation sites during emergencies. Accurate revenue estimation is essential for developing appropriate and reasonable operational plans for these areas. However, predicting demand and revenue is challenging due to their unique characteristics: they are accessible only via expressways and are not the final destinations for users. Traditional quantitative methods, such as the gravity model, often fall short in addressing these challenges. Previous studies have proposed revenue estimation models, but they are difficult to apply during the planning stage because they rely on hard-to-obtain variables, such as entry rates and detailed traffic volumes. To address this limitation, this study introduces a new revenue estimation model for expressway service areas that uses easily accessible variables, making it suitable for use during the planning stages. We developed three Gamma-distribution generalized linear models using revenue data from 182 service areas from 2017 to 2021, which yielded Bayesian Information Criterion (BIC) values ranging from 8,001 to 8,226. After evaluating the model’s fit and verifying them with 2022 data, we identified the model with the best performance. Our analysis indicates that variables such as traffic volume, total floor area, express bus transfer service area, and distance to the previous service area positively impact revenue. Conversely, an excessively large gross floor area can negatively affect revenue. The findings from this study are expected to provide valuable insights for planning service areas in future expressway constructions. KCI Citation Count: 0
Author 윤현성(Yun, Hyunseong)
김승남(Kim, Seung-Nam)
양승호(Yang, Seungho)
Author_xml – sequence: 1
  fullname: 윤현성(Yun, Hyunseong)
– sequence: 2
  fullname: 양승호(Yang, Seungho)
– sequence: 3
  fullname: 김승남(Kim, Seung-Nam)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003158211$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjM9LwlAAgB9hkJn_QrxLl2Dr_drb21HMTLCE8D7e3rZY1pRJh-4iHQw7NKhYoBBY0UEq_KPc9j8k5en7Dh_fNiiE3dADYBcjHZsEiYOLTk_qBBGmY6Iblm7qGJMNUCRUUM3CJi6AIiaEayZm5hYo9_uBgxgzGROYFEF7Ob9PZ7cwXQzy8SesN0-ylwHMn5Ls-T2PE7j8nmTDu3Q8SKcJzJOf5dcoG45gOnvNFkkWT2G2eMgmMUw_3vLHGC7nSTpPdsCmLy_7XnnNEmgf1drVY63ZqjeqlaYWcoNqvqCW4lx4ynMMz0TSEVL4ivvUcJVnIeL5nBHluA6hjDpSKcwRF0K5TCLuIloC-__bMPLtjgrsrgz-eN61O5FdOWs3bIw45xjRVby3jq-j4MpzA2n3ViKjG_u0dVjDBGFuMkp_AXoJfFQ
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.17208/jkpa.2024.12.59.7.112
DatabaseName DBPIA - 디비피아
DBPIA
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Development of a Revenue Estimation Model for Expressway Service Areas Using Generalized Linear Models with Gamma Distribution
DocumentTitle_FL Development of a Revenue Estimation Model for Expressway Service Areas Using Generalized Linear Models with Gamma Distribution
EISSN 2383-9171
EndPage 122
ExternalDocumentID oai_kci_go_kr_ARTI_10666103
NODE12016743
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
DBRKI
M~E
TDB
ACYCR
ID FETCH-LOGICAL-n653-f839c668eceb5e70ab8a8fc6f35dce902ef642cbdb2343bacc160688cd4a06d03
ISSN 1226-7147
IngestDate Fri Aug 08 03:12:06 EDT 2025
Thu Feb 06 13:22:13 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 7
Keywords Gamma distribution
일반화 선형 모형
Generalized linear model
감마 분포
Expressway Service Area
Revenue Estimation
고속도로 휴게소
매출액 추정
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n653-f839c668eceb5e70ab8a8fc6f35dce902ef642cbdb2343bacc160688cd4a06d03
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10666103
nurimedia_primary_NODE12016743
PublicationCentury 2000
PublicationDate 2024-12
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12
PublicationDecade 2020
PublicationTitle 국토계획
PublicationYear 2024
Publisher 대한국토·도시계획학회
Publisher_xml – name: 대한국토·도시계획학회
SSID ssib044744812
ssib008451685
ssib022228909
ssib001148845
ssib001106634
ssib006780971
Score 1.8910983
Snippet 본 연구에서는 2017-2021년의 전국휴게소 매출액 자료와 OpenAPI 등을 활용하여 원격으로 구득가능한 자료를 활용해 매출액 추정 모형을 구축하고 Bayesian Information Criterion(BIC) 값을 기준으로 모형을 비교한 후2022년 매출액 자료를 사용해 그...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 112
SubjectTerms 공학일반
Title 감마 분포 GLM을 활용한 고속도로 휴게소 매출액 추정 모형 개발
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE12016743
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003158211
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 국토계획, 2024, 59(7), 281, pp.112-122
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNA0GrLAS4IBIhnZQn2FDn4sbbXR9tJKYiWS5DKKbLXNo9ISVU1BzhwqioOReVAJEBBaiWkAuJQASr_FDv_wMzaThyoxOPi2OOZ2dmd7O7semZWkm7YZhCG3A4VlRpUoVbCFYebkWKqoR3hatEwMd55ZdVavk_vrJlrc_M_Kl5L_c2wzp8dG1fyP1oFGOgVo2T_QbMTpgCAe9AvXEHDcP0rHZOmSzz0VCBNj7g2YayGd55FGCXNBmFLxPVrt-6ukKZPHHimNQQ7DnF8AXKJ6wiICZCaYGcQV8V3DJg0kBswQW5QgJYjNZDaowJbJ8wvsf1aIYZLEQRSFKWYQForQeIdFOGYOTqIwARPloPyGvmiHnhTtZ7FW-DWEJWzhKRC5Ly6UB02cWAWJftCFsGciYLh6sHYzR70xWi7_BQj8oVXsjNDCIJqAh_YOwUHjyFhub8ewyj5qDdDJ3CZWqGD1tOxfjorTq0WZMoq9kKnuuGi01-cVwStL7gV6jmm8r5OPLuiI8D3SsyZRimZOCXEr0xGYBortpZnJK3HAgYWFnpL5MfWlDNYkVM976l2ZTrSChf13LLR8gjw3yZNWxeRIE8665iIS6e4P246dbs-IZ9JSL56r9HU9Dx8ZV46ocP6DI8OWXnenNrhGlqy1TyDME9UPl-DhYS5yybPDI-LniZR0nFb0pnmlaPUppTlngtlmxTR_ij7zWMlB2OxuwE25sluHw_KgNG2Yji2zkinixWf7Obd96w01-mdk1qjw1fpwQs5Pdoa736RoYtm77fk8dth9u7TeDCUR9_2su2X6e5Wuj-Ux8Pvo6872faOnB58yI6G2WBfzo5eZ3sDOf38cfxmII8Oh-nh8LzUWmq2_GWlOOBE6VqmoSSwOOGWxWIeh2Zsq0HIApZwK4HxkceOqseJRXUeRqFuUCMMONcsPCOKRzRQrUg1LkgL3V43vijJDo8TsCwTHkQ6tlSo8SgyYHwOTDWgSXhJug6N0e7wx23MJ4-_D3vtzkYbVs2326gtWEYZl6TFSWO11_NsN-2qui__CeGKdGraZa5KC5sb_fgaWO2b4aL4h_wEPFi9Iw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EA%B0%90%EB%A7%88+%EB%B6%84%ED%8F%AC+GLM%EC%9D%84+%ED%99%9C%EC%9A%A9%ED%95%9C+%EA%B3%A0%EC%86%8D%EB%8F%84%EB%A1%9C+%ED%9C%B4%EA%B2%8C%EC%86%8C+%EB%A7%A4%EC%B6%9C%EC%95%A1+%EC%B6%94%EC%A0%95+%EB%AA%A8%ED%98%95+%EA%B0%9C%EB%B0%9C&rft.jtitle=%EA%B5%AD%ED%86%A0%EA%B3%84%ED%9A%8D&rft.au=%EC%9C%A4%ED%98%84%EC%84%B1%28Yun%2C+Hyunseong%29&rft.au=%EC%96%91%EC%8A%B9%ED%98%B8%28Yang%2C+Seungho%29&rft.au=%EA%B9%80%EC%8A%B9%EB%82%A8%28Kim%2C+Seung-Nam%29&rft.date=2024-12-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B5%AD%ED%86%A0%C2%B7%EB%8F%84%EC%8B%9C%EA%B3%84%ED%9A%8D%ED%95%99%ED%9A%8C&rft.issn=1226-7147&rft.eissn=2383-9171&rft.volume=59&rft.issue=7&rft.spage=112&rft.epage=122&rft_id=info:doi/10.17208%2Fjkpa.2024.12.59.7.112&rft.externalDocID=NODE12016743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7147&client=summon