감마 분포 GLM을 활용한 고속도로 휴게소 매출액 추정 모형 개발
본 연구에서는 2017-2021년의 전국휴게소 매출액 자료와 OpenAPI 등을 활용하여 원격으로 구득가능한 자료를 활용해 매출액 추정 모형을 구축하고 Bayesian Information Criterion(BIC) 값을 기준으로 모형을 비교한 후2022년 매출액 자료를 사용해 그 성능을 검증하고자 하였다. 관련데이터의 기초 분석을 거친 후 휴게소 면적 관련 변수를 기준으로세 개의 감마 분포 일반화 선형 모형을 구축하고, 각 모형의 검증결과를 토대로 가장 합리적인 매출액 추정 모형을 제시하였다. 이후의 논의는 다음과 같다. 우선 2...
Saved in:
Published in | 국토계획 Vol. 59; no. 7; pp. 112 - 122 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Korean |
Published |
대한국토·도시계획학회
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 본 연구에서는 2017-2021년의 전국휴게소 매출액 자료와 OpenAPI 등을 활용하여 원격으로 구득가능한 자료를 활용해 매출액 추정 모형을 구축하고 Bayesian Information Criterion(BIC) 값을 기준으로 모형을 비교한 후2022년 매출액 자료를 사용해 그 성능을 검증하고자 하였다. 관련데이터의 기초 분석을 거친 후 휴게소 면적 관련 변수를 기준으로세 개의 감마 분포 일반화 선형 모형을 구축하고, 각 모형의 검증결과를 토대로 가장 합리적인 매출액 추정 모형을 제시하였다.
이후의 논의는 다음과 같다. 우선 2장에서는 휴게소 수요 추정과 관련된 선행연구를 검토하고, 3장에서 분석 방법을 설명한다.
4장에서는 분석과 검증의 결과를 토대로 매출액 추정 모형을 제시하고, 이를 바탕으로 5장에서 결론을 제시한다. Expressway service areas play a crucial role for road safety by addressing users' physiological needs and serving as evacuation sites during emergencies. Accurate revenue estimation is essential for developing appropriate and reasonable operational plans for these areas. However, predicting demand and revenue is challenging due to their unique characteristics: they are accessible only via expressways and are not the final destinations for users. Traditional quantitative methods, such as the gravity model, often fall short in addressing these challenges. Previous studies have proposed revenue estimation models, but they are difficult to apply during the planning stage because they rely on hard-to-obtain variables, such as entry rates and detailed traffic volumes. To address this limitation, this study introduces a new revenue estimation model for expressway service areas that uses easily accessible variables, making it suitable for use during the planning stages. We developed three Gamma-distribution generalized linear models using revenue data from 182 service areas from 2017 to 2021, which yielded Bayesian Information Criterion (BIC) values ranging from 8,001 to 8,226. After evaluating the model’s fit and verifying them with 2022 data, we identified the model with the best performance. Our analysis indicates that variables such as traffic volume, total floor area, express bus transfer service area, and distance to the previous service area positively impact revenue. Conversely, an excessively large gross floor area can negatively affect revenue. The findings from this study are expected to provide valuable insights for planning service areas in future expressway constructions. KCI Citation Count: 0 |
---|---|
ISSN: | 1226-7147 2383-9171 |
DOI: | 10.17208/jkpa.2024.12.59.7.112 |