딥러닝을 이용한 컨베이어 시스템의 배출구 막힘 상태 판단 기술에 관한 연구
본 연구는 컨베이어 시스템에서 딥러닝을 이용한 배출구 막힘 판단 기술에 대하여 제안한다. 제안 방법은 산업 현장의 CCTV에서 수집한 영상을 이용하여 배출구 막힘 판단을 위한 다양한CNN 모델들을 학습시키고, 성능이 가장 좋은 모델을 사용하여 실제 공정에 적용하는 것을 목적으로 한다. CNN 모델로는 잘 알려진 VGGNet, ResNet, DenseNet, 그리고 NASNet을 사용하였으며, 모델 학습과 성능 테스트를 위하여 CCTV에서 수집한 18,000장의 영상을 이용하였다. 다양한 모델에 대한 실험 결과, VGGNet은 99....
Saved in:
Published in | 한국컴퓨터정보학회논문지 Vol. 25; no. 5; pp. 11 - 18 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Korean |
Published |
한국컴퓨터정보학회
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1598-849X 2383-9945 |
DOI | 10.9708/jksci.2020.25.05.011 |
Cover
Summary: | 본 연구는 컨베이어 시스템에서 딥러닝을 이용한 배출구 막힘 판단 기술에 대하여 제안한다.
제안 방법은 산업 현장의 CCTV에서 수집한 영상을 이용하여 배출구 막힘 판단을 위한 다양한CNN 모델들을 학습시키고, 성능이 가장 좋은 모델을 사용하여 실제 공정에 적용하는 것을 목적으로 한다. CNN 모델로는 잘 알려진 VGGNet, ResNet, DenseNet, 그리고 NASNet을 사용하였으며, 모델 학습과 성능 테스트를 위하여 CCTV에서 수집한 18,000장의 영상을 이용하였다. 다양한 모델에 대한 실험 결과, VGGNet은 99.89%의 정확도와 29.05ms의 처리 시간으로 가장 좋은 성능을 보였으며, 이로부터 배출구 막힘 판단 문제에 VGGNet이 가장 적합함을 확인하였다. This study proposes a technique for the determination of outlet blockage using deep learning in a conveyor system. The proposed method aims to apply the best model to the actual process, where we train various CNN models for the determination of outlet blockage using images collected by CCTV in an industrial scene.
We used the well-known CNN model such as VGGNet, ResNet, DenseNet and NASNet, and used 18,000 images collected by CCTV for model training and performance evaluation. As a experiment result with various models, VGGNet showed the best performance with 99.03% accuracy and 29.05ms processing time, and we confirmed that VGGNet is suitable for the determination of outlet blockage. KCI Citation Count: 0 |
---|---|
ISSN: | 1598-849X 2383-9945 |
DOI: | 10.9708/jksci.2020.25.05.011 |