Variational inequalities for the commutator of some singular integral with rough kernel

In this paper, we consider variational inequalities for the commutator of the truncated singular integral operator $T_{\Omega,\beta,\varepsilon}$ with rough kernel \begin{align*} [b, T_{\Omega,\beta,\varepsilon}] f(x)= \int_{|x-y|>\varepsilon} \frac{\Omega(x-y)}{|x-y|^{n-\beta}}(b(x)-b(y)) f(y) d...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Mathematical Society pp. 1003 - 1036
Main Authors Yanping Chen, Liu Yang
Format Journal Article
LanguageEnglish
Published 대한수학회 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we consider variational inequalities for the commutator of the truncated singular integral operator $T_{\Omega,\beta,\varepsilon}$ with rough kernel \begin{align*} [b, T_{\Omega,\beta,\varepsilon}] f(x)= \int_{|x-y|>\varepsilon} \frac{\Omega(x-y)}{|x-y|^{n-\beta}}(b(x)-b(y)) f(y) d y, \end{align*} where $b\in BMO(\mathbb{R}^n)$ and the kernel $\Omega\in{(L(log^+L)^3)^{\frac{n}{n-\beta}}(\mathbb{S}^{n-1})}$ satisfies the vanishing condition and the homogeneous condition of degree $0$. We establish the $(L^p,L^q)$ estimate of the variation of the families $\{[b, T_{\Omega,\beta,\varepsilon}]\}_{\varepsilon>0}$ for $\frac{1}{q}=\frac{1}{p}-\frac{\beta}{n}$ and $0<\beta<1/2$. Moreover, one can get the $L^p$ boundedness of the commutator for Calder\'{o}n-Zygmund operator by letting $\beta\rightarrow0^+$. KCI Citation Count: 0
Bibliography:https://jkms.kms.or.kr/journal/view.html?doi=10.4134/JKMS.j240318
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.j240318