Adenosine N1-Oxide Exerts Anti-inflammatory Effects through the PI3K/Akt/GSK-3β Signaling Pathway and Promotes Osteogenic and Adipocyte Differentiation

Previously, we reported that adenosine N1-oxide (ANO), which is found in royal jelly, inhibited the secretion of inflammatory mediators by activated macrophages and reduced lethality in lipopolysaccharide (LPS)-induced endotoxin shock. Here, we examined the regulatory mechanisms of ANO on the releas...

Full description

Saved in:
Bibliographic Details
Published inBiological and Pharmaceutical Bulletin Vol. 42; no. 6; pp. 968 - 976
Main Authors Emiko Ohashi, Keizo Kohno, Norie Arai, Akira Harashima, Toshio Ariyasu, Shimpei Ushio
Format Journal Article
LanguageJapanese
Published Pharmaceutical Society of Japan 01.06.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previously, we reported that adenosine N1-oxide (ANO), which is found in royal jelly, inhibited the secretion of inflammatory mediators by activated macrophages and reduced lethality in lipopolysaccharide (LPS)-induced endotoxin shock. Here, we examined the regulatory mechanisms of ANO on the release of pro-inflammatory cytokines, with a focus on the signaling pathways activated by toll-like receptor (TLR)4 in response to LPS. ANO inhibited both tumor necrosis factor (TNF)-α and interleukin (IL)-6 secretion from LPS-stimulated RAW264.7 cells without affecting cell proliferation. In this response, phosphorylation of mitogen-activated protein kinase (MAPK) family members (extracellular signal-regulated kinase (ERK)1/2, p38 and SAPK/c-Jun N-terminal kinase (JNK)) and nuclear factor-κB (NF-κB) p65 was not affected by treatment with ANO. In contrast, phosphorylation of Akt (Ser473) and its downstream molecule glycogen synthase kinase-3β(GSK-3β)(Ser9) was up-regulated by ANO, suggesting that ANO stimulated GSK-3β phosphorylation via phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The phosphorylation of GSK-3β on Ser9 has been shown to negatively regulate the LPS-induced inflammatory response. Activation of PI3K/Akt signaling pathway has also been implicated in differentiation of mesenchymal stem cells into osteoblasts and adipocytes. As expected, ANO induced alkaline phosphatase activity and promoted calcium deposition in a mouse pre-osteoblastic MC3T3-E1 cell line. The ANO-induced differentiation into osteoblasts was abrogated by coincubation with Wortmannin. Furthermore, ANO promoted insulin/dexamethasone-induced differentiation of mouse 3T3-L1 preadipocytes into adipocytes at much lower concentrations than adenosine. The protective roles of PI3K/Akt/GSK-3β signaling pathway in inflammatory disorders have been well documented. Our data suggest that ANO may serve as a potential candidate for the treatment of inflammatory disorders. Promotion of osteogenic and adipocyte differentiation further suggests its application for regenerative medicine.
ISSN:0918-6158
1347-5215