Serotonin Suppresses β-Casein Expression via Inhibition of the Signal Transducer and Activator of Transcription 5 (STAT5) Protein Phosphorylation in Human Mammary Epithelial Cells MCF-12A

Serotonin (5-hydroxytryptamine ; 5-HT) has an important physiological role in controlling lactation, namely, milk volume homeostasis, within mammary glands. The objectives of this study were to evaluate whether exogenous 5-HT can suppress β-casein expression, a differentiation marker, produced in hu...

Full description

Saved in:
Bibliographic Details
Published inBiological and Pharmaceutical Bulletin Vol. 37; no. 8; pp. 1336 - 1340
Main Authors Takeshi Chibaa, Soichiro Kimurab, Katsuo Takahashia, Yasunori Morimotob, Atsushi Sanbec, Hideo Uedab, Kenzo Kudoa
Format Journal Article
LanguageJapanese
Published Pharmaceutical Society of Japan 01.08.2014
Online AccessGet full text

Cover

Loading…
More Information
Summary:Serotonin (5-hydroxytryptamine ; 5-HT) has an important physiological role in controlling lactation, namely, milk volume homeostasis, within mammary glands. The objectives of this study were to evaluate whether exogenous 5-HT can suppress β-casein expression, a differentiation marker, produced in human mammary epithelial cells, and to determine whether 5-HT can attenuate β-casein signaling via the prolactin (PRL) receptor (PRLr) and Janus kinase 2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL treatment increased the mRNA level of β-casein in the MCF-12A human mammary epithelial cell line, and the highest level occurred at days 7 and 14 of culture. In contrast, PRLr expression was not affected significantly by PRL treatment. PRL treatment in MCF-12A cells increased levels of β-casein and phosphorylated STAT5 (pSTAT5) proteins in a concentration-dependent manner, with a slight increase of STAT5 protein. β-Casein expression was inhibited by 0.1 mM 5-HT in a time-dependent manner. Additionally, treatment with 0.1 mM 5-HT for 72 h decreased protein levels of β-casein and pSTAT5, with a slight decrease in STAT5 levels. These results suggest that exogenous 5-HT can inhibit STAT5 phosphorylation, resulting in a decrease in β-Casein expression. In conclusion, we showed that exogenous 5-HT decreased β-casein expression in MCF-12A human mammary epithelial cells, and that 5-HT was responsible for inhibiting phosphorylation of STAT5, resulting in a decline in lactational function.
ISSN:0918-6158