비정형 데이터를 이용한 ICO(Initial Coin Offering) 정량적 평가 방법에 대한 연구

Initial public offering (IPO) has a legal framework for investor protection, and because there are various quantitative evaluation factors, objective analysis is possible, and various studies have been conducted. In addition, crowdfunding also has several devices to prevent indiscriminate funding as...

Full description

Saved in:
Bibliographic Details
Published in스마트미디어저널 Vol. 11; no. 5; pp. 63 - 74
Main Authors 이한솔, 안상호, 강주영, Lee, Han Sol, Ahn, Sangho, Kang, Juyoung
Format Journal Article
LanguageKorean
Published 한국스마트미디어학회 30.06.2022
Korean Institute of Smart Media
(사)한국스마트미디어학회
Subjects
Online AccessGet full text
ISSN2287-1322
2288-9671
DOI10.30693/SMJ.2022.11.5.63

Cover

Loading…
More Information
Summary:Initial public offering (IPO) has a legal framework for investor protection, and because there are various quantitative evaluation factors, objective analysis is possible, and various studies have been conducted. In addition, crowdfunding also has several devices to prevent indiscriminate funding as the legal system for investor protection. On the other hand, the blockchain-based cryptocurrency white paper (ICO), which has recently been in the spotlight, has ambiguous legal means and standards to protect investors and lacks quantitative evaluation methods to evaluate ICOs objectively. Therefore, this study collects online-published ICO white papers to detect fraud in ICOs, performs ICO fraud predictions based on BERT, a text embedding technique, and compares them with existing Random Forest machine learning techniques, and shows the possibility on fraud detection. Finally, this study is expected to contribute to the study of ICO fraud detection based on quantitative methods by presenting the possibility of using a quantitative approach using unstructured data to identify frauds in ICOs. 기업공개(IPO)는 투자자 보호를 위한 법적 테두리가 마련되어 있으며, 다양한 정량적 평가 요소가 존재하기 때문에 객관적인 분석이 가능하며 다양한 연구가 수행되어 왔다. 또한, 크라우드펀딩 역시 투자자 보호를 위한 법적 제도와 무분별한 펀딩을 방지하기 위한 여러 장치가 마련되어 있다. 반면에 최근 각광받는 블록체인 기반의 암호화폐 백서(ICO)는 투자자를 보호할 법적 수단과 기준이 모호하며 ICO를 객관적으로 평가하기 위한 정량적 평가 방법이 미흡한 상황이다. 따라서 본 연구는 ICO의 사기 여부를 탐지하기 위해 온라인상 공개된 ICO 백서를 수집하고 텍스트 임베딩 기법인 BERT에 기반한 ICO 사기 예측을 수행하였고 기존의 Random Forest 머신러닝 기법과 비교하여 정량적 방법으로 사기 탐지가 가능함을 보였다. 최종적으로 본 연구는 비정형 데이터에 기반하여 ICO의 사기 여부를 판단할 수 있는 정량적 접근 방법론의 활용 가능성을 제시함으로써 정량적 방법에 기초한 ICO 사기 탐지 연구에 기여할 수 있을 것으로 기대된다
Bibliography:KISTI1.1003/JNL.JAKO202220257635390
ISSN:2287-1322
2288-9671
DOI:10.30693/SMJ.2022.11.5.63