PM10 예보 정확도 향상을 위한 Deep Neural Network 기반 농도별 분리 예측 모델
The human impact of particulate matter are revealed and demand for improved forecast accuracy is increasing. Recently, efforts is made to improve the accuracy of PM10 predictions by using machine learning, but prediction performance is decreasing due to the particulate matter data with a large rate...
Saved in:
Published in | 한국정보통신학회논문지 Vol. 24; no. 1; pp. 8 - 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Korean |
Published |
한국정보통신학회
2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2234-4772 2288-4165 |
DOI | 10.6109/jkiice.2020.24.1.8 |
Cover
Summary: | The human impact of particulate matter are revealed and demand for improved forecast accuracy is increasing. Recently, efforts is made to improve the accuracy of PM10 predictions by using machine learning, but prediction performance is decreasing due to the particulate matter data with a large rate of low concentration occurrence. In this paper, separation prediction model by concentration is proposed to improve the accuracy of PM10 particulate matter forecast. The low and high concentration prediction model was designed using the weather and air pollution factors in Cheonan, and the performance comparison with the prediction models was performed. As a result of experiments with RMSE, MAPE, correlation coefficient, and AQI accuracy, it was confirmed that the predictive performance was improved, and that 20.62% of the AQI high-concentration prediction performance was improved. 미세먼지의 인체 영향이 밝혀지며 예보정확도 개선에 대한 요구가 증가하고 있다. 이에 기계 학습 기법을 도입하여 예측 정확성을 높이려는 노력이 수행되고 있으나, 저농도 발생 비율이 매우 큰 미세먼지 데이터로 인해 전체 예측 성능이 떨어지는 문제가 있다. 본 논문에서는 PM10 미세먼지 예보 정확도 향상을 위해 농도별 분리 예측 모델을 제안한다. 이를 위해 천안 지역의 기상 및 대기오염 인자를 활용하여 저, 고농도별 예측 모델을 설계하고 전 영역 예측 모델과의 성능 비교를 수행하였다. RMSE, MAPE, 상관계수 및 AQI 정확도를 통한 성능 비교 결과, 전체 기준에서 예측 성능이 향상됨을 확인하였으며, AQI 고농도 예측 성능의 경우 20.62%의 성능 향상이 나타났음을 확인하였다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202005653789354 http://jkiice.org |
ISSN: | 2234-4772 2288-4165 |
DOI: | 10.6109/jkiice.2020.24.1.8 |