분산병렬처리 환경에서 오토매핑 기법을 통한 NoSQL과 RDBMS와의 연동

Lately big data processing is considered as an emerging issue. As a huge amount of data is generated, data processing capability is getting important. In processing big data, both Hadoop distributed file system and unstructured date processing-based NoSQL data store are getting a lot of attention. H...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 21; no. 11; pp. 2067 - 2075
Main Authors 김희성(Hee Sung Kim), 이봉환(Bong Hwan Lee)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lately big data processing is considered as an emerging issue. As a huge amount of data is generated, data processing capability is getting important. In processing big data, both Hadoop distributed file system and unstructured date processing-based NoSQL data store are getting a lot of attention. However, there still exists problems and inconvenience to use NoSQL. In case of low volume data, MapReduce of NoSQL normally consumes unnecessary processing time and requires relatively much more data retrieval time than RDBMS. In order to address the NoSQL problem, in this paper, an interworking scheme between NoSQL and the conventional RDBMS is proposed. The developed auto-mapping scheme enables to choose an appropriate database (NoSQL or RDBMS) depending on the amount of data, which results in fast search time. The experimental results for a specific data set shows that the database interworking scheme reduces data searching time by 35% at the maximum. 최근 빅데이터가 주목받게 되면서 빅데이터를 처리하기 위한 시스템들도 중요하게 여겨지고 있다. 빅데이터 처리 시스템으로 분산파일시스템인 Hadoop과 비정형 데이터 처리를 위한 NoSQL 데이터 스토어가 주목받고 있다. 하지만 아직까지 NoSQL을 사용함에 있어 어려움이나 불편함도 존재한다. 저용량 데이터인 경우 NoSQL의 MapReduce는 불필요한 작업시간을 소모하게 되며, RDBMS 보다 상대적으로 많은 데이터 탐색 시간이 소요되기도 한다. 본 논문에서는 이러한 NoSQL의 문제점을 해결하기 위해 NoSQL과 RDBMS 간의 연동 기법을 제안하였다. 개발한 오토매핑 기법은 처리할 데이터의 양에 따라 적합한 데이터베이스를 사용하게 하여 결과적으로 검색시간을 빠르게 할 수 있다. 실험 결과 제안한 데이터베이스 연동 기법은 특정 데이터 셋의 경우 검색시간을 최대 35%까지 줄일 수 있다.
Bibliography:KISTI1.1003/JNL.JAKO201706749670297
http://jkiice.org
ISSN:2234-4772
2288-4165
DOI:10.6109/jkiice.2017.21.11.2067