HMM(Hidden Markov Model)을 이용한 핸드 제스처인식

본 논문에서는 비전 기반의 실시간 손 모양 인식을 위한 알고리즘을 제안하였다. 먼저 피부색을 검출하기 위해 RGB 컬러모델을 YCbCr 컬러모델로 변환하고, 색차성분인 CbCr을 이용하여 피부색을 검출한다. 검출 후 피부색은 흰색, 그 이외의 색은 검은색으로 이진화 하였다. 이진화 후 팔 영역과 얼굴영역을 제거하고, 손 영역만 검출하여 손의 무게중심을 구하기 위해 가로, 세로로 프로젝션을 수행한다. 손의 무게중심을 찾은 후에 손의 궤적을 추적하기위해 칼만필터를 이용하였다. 손의 궤적 추적 후에 손 모양을 인식시키기 위해 HMM(Hi...

Full description

Saved in:
Bibliographic Details
Published in디지털콘텐츠학회논문지 Vol. 10; no. 2; pp. 291 - 298
Main Authors 하정요(Jeong-Yo Ha), 이민호(Min-Ho Lee), 최형일(Hyung-il Choi)
Format Journal Article
LanguageKorean
Published 한국디지털콘텐츠학회 2009
Subjects
Online AccessGet full text
ISSN1598-2009
2287-738X

Cover

Loading…
More Information
Summary:본 논문에서는 비전 기반의 실시간 손 모양 인식을 위한 알고리즘을 제안하였다. 먼저 피부색을 검출하기 위해 RGB 컬러모델을 YCbCr 컬러모델로 변환하고, 색차성분인 CbCr을 이용하여 피부색을 검출한다. 검출 후 피부색은 흰색, 그 이외의 색은 검은색으로 이진화 하였다. 이진화 후 팔 영역과 얼굴영역을 제거하고, 손 영역만 검출하여 손의 무게중심을 구하기 위해 가로, 세로로 프로젝션을 수행한다. 손의 무게중심을 찾은 후에 손의 궤적을 추적하기위해 칼만필터를 이용하였다. 손의 궤적 추적 후에 손 모양을 인식시키기 위해 HMM(Hidden Markov Model)을 이용하여 6가지 손의 모양을 학습한 후 인식하였다. 실험을 통하여 제안한 알고리즘의 효과를 입증하였다. In this paper we proposed a vision based realtime hand gesture recognition method. To extract skin color, we translate RGB color space into YCbCr color space and use CbCr color for the final extraction. To find the center of extracted hand region we apply practical center point extraction algorithm. We use Kalman filter to tracking hand region and use HMM(Hidden Markov Model) algorithm (learning 6 type of hand gesture image) to recognize it. We demonstrated the effectiveness of our algorithm by some experiments. KCI Citation Count: 2
Bibliography:G704-001943.2009.10.2.011
ISSN:1598-2009
2287-738X