Salt and Pepper 잡음 제거를 위한 퍼지 논리 가중치 필터

With the development of IoT technology, image processing is being utilized in various fields such as image analysis, image recognition, medical industry, and factory automation. Noise is generated in image data from causes such as defect in transmission line. Image noise must be removed because it d...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 26; no. 4; pp. 526 - 532
Main Authors 이화영(Hwa-Yeong Lee), 김남호(Nam-Ho Kim)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the development of IoT technology, image processing is being utilized in various fields such as image analysis, image recognition, medical industry, and factory automation. Noise is generated in image data from causes such as defect in transmission line. Image noise must be removed because it damages the performance of the image processing application program. Salt and Pepper noise is a representative type of image noise, and various studies have been conducted to remove Salt and Pepper noise. Widely known methods include A-TMF, AFMF, and SDWF. However, as the noise density increases, the performance deteriorates. Thus, this paper proposes an algorithm that performs filtering using a fuzzy logic weight mask only in case of noise after noise determination. In order to prove the noise removal performance of the proposed algorithm, an experiment was performed on images with 10% to 90% noise added and the PSNR was compared. IoT 기술 발전에 따라 영상처리는 영상 분석, 영상 인식, 의료산업, 공장자동화 등 다양한 분야에서 활용되고 있다. 영상 데이터는 전송 라인의 결함 등의 원인으로 인하여 잡음이 발생하고, 영상잡음은 이미지 처리 응용 프로그램의 성능을 감소시키기 때문에 필수적으로 제거해야 한다. 영상잡음의 대표적인 유형으로 Salt and Pepper 잡음이 있으며, Salt and Pepper 잡음을 제거하기 위하여 다양한 연구가 진행되었다. 대표적인 방법으로는 A-TMF, AFMF, SDWF 등이 있지만 잡음의 밀도가 높아질수록 성능이 떨어지는 단점이 있으므로, 본 논문에서는 효과적인 잡음 제거를 위하여 잡음 판단을 진행한 후, 잡음일 경우에만 퍼지 논리 가중치 마스크를 이용하여 필터링을 진행하는 알고리즘을 제안한다. 제안된 알고리즘의 잡음 제거 성능을 증명하기 위하여 10%에서 90%의 잡음을 첨가한 영상에 대하여 실험하여 PSNR을 비교한 결과 기존 알고리즘보다 약 17.09[dB] 정도의 성능이 우수함을 보였다.
Bibliography:KISTI1.1003/JNL.JAKO202212462662742
http://jkiice.org
ISSN:2234-4772
2288-4165
DOI:10.6109/jkiice.2022.26.4.526