어종 분류를 위한 CNN의 적용

In this study, before system development for the elimination of foreign fish species, we propose an algorithm to classify fish species by training fish images with CNN. The raw data for CNN learning were directly captured images for each species, Dataset 1 increases the number of images to improve t...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 23; no. 1; pp. 39 - 46
Main Authors 박진현(Jin-Hyun Park), 황광복(Kwang-Bok Hwang), 박희문(Hee-Mun Park), 최영규(Young-Kiu Choi)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, before system development for the elimination of foreign fish species, we propose an algorithm to classify fish species by training fish images with CNN. The raw data for CNN learning were directly captured images for each species, Dataset 1 increases the number of images to improve the classification of fish species and Dataset 2 realizes images close to natural environment are constructed and used as training and test data. The classification performance of four CNNs are over 99.97% for dataset 1 and 99.5% for dataset 2, in particular, we confirm that the learned CNN using Data Set 2 has satisfactory performance for fish images similar to the natural environment. And among four CNNs, AlexNet achieves satisfactory performance, and this has also the shortest execution time and training time, we confirm that it is the most suitable structure to develop the system for the elimination of foreign fish species. 본 연구에서 외래어종 퇴치를 위한 시스템 개발에 앞서 물 안의 어류 이미지를 CNN으로 학습하여 어종을 분류하는 알고리즘을 제안하고자 한다. CNN 학습을 위한 원데이터(raw data)는 각 어종에 대해 직접 촬영한 영상을 사용하였으며, 어종 분류성능을 높이기 위해 영상 이미지의 개수를 늘린 데이터세트 1과 최대한 자연환경과 가까운 영상 이미지를 구현한 데이터세트 2를 구성하여 학습 및 테스트 데이터로 사용하였다. 4가지 CNN의 분류성능은 데이터세트 1에 대해 99.97%, 데이터세트 2에 대해 99.5% 이상을 나타내었으며, 특히 데이터세트 2를 사용하여 학습한 CNNs이 자연환경과 유사한 어류 이미지에 대해서도 만족할 만한 성능을 가짐을 확인하였다. 그리고 4가지 CNN 중 AlexNet이 성능에서도 만족스러운 결과를 도출하였으며, 수행시간과 학습시간 역시 가장 짧아 외래어종 퇴치를 위한 시스템 개발에 가장 적합한 구조임을 확인하였다.
Bibliography:KISTI1.1003/JNL.JAKO201912261948910
http://jkiice.org
ISSN:2234-4772
2288-4165
DOI:10.6109/jkiice.2019.23.1.39