아연의 1차혈관평활근세포 증식에 대한 기능

Purpose: The vascular smooth muscle cells (VSMCs) in mature animals have implicated to play a major role in the progression of cardiovascular diseases such as atherosclerosis. This study aimed at optimizing the protocol in culturing primary VSMCs (pVSMCs) from rat thoracic aorta and investigating th...

Full description

Saved in:
Bibliographic Details
Published inJournal of nutrition and health Vol. 53; no. 6; pp. 563 - 569
Main Authors 조영은(Young-Eun Cho), 권인숙(In-Sook Kwun)
Format Journal Article
LanguageKorean
Published 한국영양학회 2020
Subjects
Online AccessGet full text
ISSN2288-3886
2288-3959
DOI10.4163/jnh.2020.53.6.563

Cover

Loading…
More Information
Summary:Purpose: The vascular smooth muscle cells (VSMCs) in mature animals have implicated to play a major role in the progression of cardiovascular diseases such as atherosclerosis. This study aimed at optimizing the protocol in culturing primary VSMCs (pVSMCs) from rat thoracic aorta and investigating the effect of cellular zinc (Zn) deficiency on cell proliferation of the isolated pVSMCs. Methods: The thoracic aorta from 7-month-old Sprague Dawley rats was isolated, minced and digested by the enzymatic process of collagenase I and elastase, and then inoculated with the culture Dulbecco Modified Eagle Medium (DMEM) at 37℃ in an incubator. The primary cell culture morphology was observed using phase-contrast microscopy and cellular Zn was depleted using Chelex-100 resin (extracellular zinc depletion only) or 3 µM N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) (extracellular and intracellular zinc depletion). Western blot analysis was used for the detection of SM22α and calponin as smooth muscle cell marker proteins and von Willebrand factor as endothelial cell marker protein to detect the culture purity. Cell proliferation by Zn depletion (1 day) was measured by MTT assay. Results: A primary culture protocol for pVSMCs from rat thoracic aorta was developed and optimized. Isolated cultures exhibited hill and valley morphology as the major characteristics of pVSMCs and expressed the smooth muscle cell protein markers, SM22α and calponin, while the endothelial marker von Willebrand factor was hardly detected. Zn deprivation for 1 day culture decreased rat primary vascular smooth muscle cell proliferation and this pattern was more prominent under severe Zn depletion (3 µM TPEN), while less prominent under mild Zn depletion (Chelexing). Conclusion: Our results suggest that cellular Zn deprivation decreased pVSMC proliferation and this may be involved in phenotypic modulation of pVSMC in the aorta.
Bibliography:KISTI1.1003/JNL.JAKO202007853262988
https://www.e-jnh.org/DOIx.php?id=10.4163/jnh.2020.53.6.563
ISSN:2288-3886
2288-3959
DOI:10.4163/jnh.2020.53.6.563