바이오에너지용 억새 펠릿의 품질 및 연소 특성
In this study we made fuel pellet from miscanthus biomass and investigated changes of physiological characteristics and electricity consumption of pelletizing process in comparison with fuel pellet made of pine sawdust. We also examined combustion characteristics including ash content and clinker fo...
Saved in:
Published in | Clean Technology, 22(4) Vol. 22; no. 4; pp. 286 - 291 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Korean |
Published |
한국청정기술학회
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1598-9712 2288-0690 |
Cover
Loading…
Summary: | In this study we made fuel pellet from miscanthus biomass and investigated changes of physiological characteristics and electricity consumption of pelletizing process in comparison with fuel pellet made of pine sawdust. We also examined combustion characteristics including ash content and clinker forming ratio with fuel pellet made of mixing with micanthus biomass and lime powder. Bulk density of ground-miscanthus and pine sawdust were $158g\;L^{-1}$ and $187g\;L^{-1}$, respectively. Bulk density of ground miscanthus was lower than that of pine sawdust, but increased to $653g\;L^{-1}$ after pelletizing, which was similar to $656g\;L^{-1}$ of pine sawdust pellet. Moisture content in raw miscanthus and ground miscanthus were 17.0% and 11.8%, respectively. Moisture content in ground miscanthus was similar to that of pine saw dust and decreased to 6.73% after pelletizing, which was 7.7% lower than that of pine sawdust pellet. Although $27kWh\;ton^{-1}$ were required for compaction press that was an additional process in miscanthus pelleitizing, total required electricity was $193kWh\;ton^{-1}$ which was similar to $195kWh\;ton^{-1}$ of pine sawdust pellet pelleitizing. Pellet durability and pelletizing ratio of miscanthus were 98.0% and 99.7%, respectively, which were similar to 98.1% and 99.4% of pine sawdust pellet. When lime mixing ratio increased, ash melting degree and clinker forming ratio of miscanthus pellet increased. While higher heating value and clinker forming ratio of miscanthus pellet decreased. 본 연구는 억새 바이오매스로 성형한 연료펠릿의 실용화를 앞당기기 위해 소나무 톱밥 펠릿과 비교한 성형 단계별 물리적 특성 변화, 소요 전력 그리고 성형된 펠릿의 품질을 조사하고, 연소 특성 개선을 위해 석회혼합 비율별로 펠릿을 성형하여 회분 함량 등 연소특성을 조사하였다. 겉보기 밀도는 억새가 원료단계와 분쇄 후에 소나무 톱밥에 비해 낮았으나 펠릿 성형 후에는 소나무 톱밥과 비슷하였다. 수분함량은 억새가 원료 단계에서 소나무 톱밥에 비해 높았으나 분쇄 후에는 비슷하였고, 펠릿 성형 후에는 낮아졌다. 억새는 소나무 톱밥 펠릿성형 공정에 없는 밀도증가 단계가 있지만 총 소요 전력이 비슷하였고, 성형된 펠릿의 내구성과 성형율도 소나무 톱밥과 차이가 없었다. 억새 펠릿은 석회혼합 비율이 증가함에 따라 회분함량이 증가하고 고위 발열량이 다소 낮아졌으나, 회분 용융점이 높아지고 clinker 발생률은 감소하는 경향이었다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201606776005846 G704-001672.2016.22.4.013 |
ISSN: | 1598-9712 2288-0690 |