영어학습 도구로서 기계번역기의 가용성 분석 - as구문 역번역을 통하여

Machine translators first appeared in the 1950s and made a leap in translation accuracy by applying the neural translation system in the 2010s. However, it is still having difficulty in translating complex sentences, which made it inconvenient to use machine translators as an English learning tool....

Full description

Saved in:
Bibliographic Details
Published in한국콘텐츠학회 논문지, 21(5) Vol. 21; no. 5; pp. 259 - 267
Main Authors 박권호(Kwonho Park), 김정렬(Jeong-ryeol Kim)
Format Journal Article
LanguageKorean
Published 한국콘텐츠학회 2021
Subjects
Online AccessGet full text
ISSN1598-4877
2508-6723
DOI10.5392/JKCA.2021.21.05.259

Cover

More Information
Summary:Machine translators first appeared in the 1950s and made a leap in translation accuracy by applying the neural translation system in the 2010s. However, it is still having difficulty in translating complex sentences, which made it inconvenient to use machine translators as an English learning tool. Therefore, this study analyzed the usability of a machine translator as an English learning tool through a backtranslation experiment of as phrases. As analysis tools, Google Translator, Naver Papago, and Microsoft Translator, were used since they are representative machine translators using a neural translation system. As a result of the study, findings are: The usability was significantly different according to each as usage when using a machine translator. Accordingly, as usages in sentences were classified into high, ordinary, and low usability. Unlike previous studies, this study has a research contribution in analyzing the machine translator as a direct learning tool and quantifying the usability of the conjunction as. 기계번역기는 1950년대 처음 등장하였고 2010년대 신경망번역시스템을 적용하면서 번역정확성에 비약적인 발전을 하였다. 하지만 아직도 복잡한 문장의 번역에는 어려움을 겪고 있으며 이것은 영어학습 도구로서 기계번역기를 이용하는데 불편함을 주었다. 따라서 본 연구는 고등학교 1학년 수준의 문장들 중 다양한 뜻과 품사를 가지고 있는 as가 포함된 문장들을 분석대상으로 기계번역기를 이용한 역번역실험을 통해서 영어학습 도구로서 기계번역기의 가용성을 분석했다. 분석도구로는 신경망번역시스템을 이용한 대표적인 기계번역기인 구글 번역기, 네이버 파파고, 마이크로소프트 번역기를 이용하였다. 연구결과 기계번역기 사용시 각 as용법에 따라서 가용성이 유의하게 다른 것을 확인하였고 그에 따라 각 문장에 쓰인 as용법을 기계번역기를 사용하여 학습할 시 가용성이 높은 용법, 보통인 용법, 낮은 용법으로 분류하였다. 선행연구와는 다르게 직접 학습도구로서 기계번역기를 분석했고 접속사 as의 용법의 가용성을 수치화 시킨 데 있어서 본 연구는 연구적 공헌점을 가진다.
Bibliography:KISTI1.1003/JNL.JAKO202116153220288
ISSN:1598-4877
2508-6723
DOI:10.5392/JKCA.2021.21.05.259