간판영상에서 한글 인식 성능향상을 위한 가중치 기반 음소 단위 분할 교정
In this paper, we propose a correction method using phoneme unit segmentation to solve misrecognition of Korean Texts in signboard images using weighted Disassemble Levenshtein Distance. The proposed method calculates distances of recognized texts which are segmented into phoneme units and detects t...
Saved in:
Published in | 한국콘텐츠학회 논문지, 12(2) Vol. 12; no. 2; pp. 105 - 115 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Korean |
Published |
한국콘텐츠학회
2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1598-4877 2508-6723 |
Cover
Summary: | In this paper, we propose a correction method using phoneme unit segmentation to solve misrecognition of Korean Texts in signboard images using weighted Disassemble Levenshtein Distance. The proposed method calculates distances of recognized texts which are segmented into phoneme units and detects the best matched texts from signboard text database. For verifying the efficiency of the proposed method, a database dictionary is built using 1.3 million words of nationwide signboard through removing duplicated words. We compared the proposed method to Levenshtein Distance and Disassemble Levenshtein Distance which are common representative text string comparison algorithms. As a result, the proposed method based on weighted Disassemble Levenshtein Distance represents an improvement in recognition rates 29.85% and 6% on average compared to that of conventional methods, respectively. 본 논문에서는 휴대폰 카메라를 통해 간판영상의 한글문자를 인식한 후 오인식 된 결과를 교정하는 방법으로 인식 후보를 음소단위 분할하고 연산 가중치를 적용한 weighted Disassemble Levenshtein Distance(wDLD)를 제안한다. 제안된 방법은 인식된 문자열을 음소 단위로 분할한 후 입력 형태의 거리값을 산출하여, 가장 유사한 상호명을 데이터베이스에서 검출 한다. 제안된 방법의 효율성을 검증하기 위해, 전국의 상호명 중 중복되는 상호명을 제거한 130만개의 상호명을 이용하여 데이터베이스 사전을 구축하였다. 또한 대표적인 문자열 비교 알고리즘인 Levenshtein Distance와 음소를 분할하여 적용한 Disassemble Levenshtein Distance 방법, 그리고 본 논문에서 제안한 인식 후보의 음소 단위 분할 방법과 연산 가중치를 적용한 weighted Disassemble Levenshtein Distance의 교정율을 비교 분석 하였다. 그 결과 제안된 weighted Disassemble Levenshtein Distance(wDLD)은 Levenshtein Distance와 Disassemble Levenshtein Distance방법에 비해 각각 평균 29.85%와 6%의 인식률의 향상을 보였다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201209640670429 G704-001475.2012.12.2.026 |
ISSN: | 1598-4877 2508-6723 |