분산 컴퓨팅 환경에서 효율적인 유사 조인 질의 처리를 위한 행렬 기반 필터링 및 부하 분산 알고리즘
As distributed computing platforms like Hadoop MapReduce have been developed, it is necessary to perform the conventional query processing techniques, which have been executed in a single computing machine, in distributed computing environments efficiently. Especially, studies on similarity join que...
Saved in:
Published in | 한국콘텐츠학회 논문지, 16(7) Vol. 16; no. 7; pp. 667 - 680 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Korean |
Published |
한국콘텐츠학회
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | As distributed computing platforms like Hadoop MapReduce have been developed, it is necessary to perform the conventional query processing techniques, which have been executed in a single computing machine, in distributed computing environments efficiently. Especially, studies on similarity join query processing in distributed computing environments have been done where similarity join means retrieving all data pairs with high similarity between given two data sets. But the existing similarity join query processing schemes for distributed computing environments have a problem of skewed computing load balance between clusters because they consider only the data transmission cost. In this paper, we propose Matrix-based Load-balancing Algorithm for efficient similarity join query processing in distributed computing environment. In order to uniform load balancing of clusters, the proposed algorithm estimates expected computing cost by using matrix and generates partitions based on the estimated cost. In addition, it can reduce computing loads by filtering out data which are not used in query processing in clusters. Finally, it is shown from our performance evaluation that the proposed algorithm is better on query processing performance than the existing one. 하둡 맵리듀스와 같은 분산 컴퓨팅 플랫폼이 개발됨에 따라, 기존 단일 컴퓨터 상에서 수행되는 질의 처리 기법을 분산 컴퓨팅 환경에서 효율적으로 수행하는 것이 필요하다. 특히, 주어진 두 데이터 집합에서 유사도가 높은 모든 데이터 쌍을 탐색하는 유사 조인 질의를 분산 컴퓨팅 환경에서 수행하려는 연구가 있어 왔다. 그러나 분산 병렬 환경에서의 기존 유사 조인 질의처리 기법은 데이터 전송 비용만을 고려하기 때문에 클러스터 간에 비균등 연산 부하 분산의 문제점이 존재한다. 본 논문에서는 분산 컴퓨팅 환경에서 효율적인 유사 조인 처리를 위한 행렬 기반 부하 분산 알고리즘을 제안한다. 제안하는 알고리즘은 클러스터의 균등 부하 분산을 위해 행렬을 이용하여 예상되는 연산 부하를 측정하고 이에 따라 파티션을 생성한다. 아울러, 클러스터에서 질의 처리에 사용되지 않는 데이터를 필터링함으로서 연산 부하를 감소시킨다. 마지막으로 성능 평가를 통해 제안하는 알고리즘이 기존 기법에 비해 질의 처리 성능 측면에서 우수함을 보인다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201624557928835 G704-001475.2016.16.7.008 |
ISSN: | 1598-4877 2508-6723 |
DOI: | 10.5392/JKCA.2016.16.07.667 |