계절별 데이터와 농도별 데이터의 학습에 대한 LSTM 기반의 PM2.5 예측 모델 성능 평가
미세먼지에 대한 연구는 실시간으로 발전하고 있으며, 예측 모델의 정확도를 향상시키기 위해 다양한 방법이 연구되고 있다. 또한 미세먼지의 정확한 원인과 영향을 파악하기 위해 이러한 다양한 요소들을 고려하는 연구들이 활발히 이루어지고 있다. 본 논문에서는 PM 2.5 와 상관성이 있는 데이터를 계절을 기준으로 구분하여 학습하는 예측 모델과 특정 농도를 기준으로 저농도와 고농도를 구분하여 학습하는 모델을 통해 예측 성능의 비교 및 분석을 진행하였다. 기상데이터와 대기오염 물질 데이터를 사용하였으며 PM 2.5 와 상관관계를 확인하여 학습...
Saved in:
Published in | 한국항행학회논문지 Vol. 28; no. 1; pp. 149 - 154 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Korean |
Published |
한국항행학회
28.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 미세먼지에 대한 연구는 실시간으로 발전하고 있으며, 예측 모델의 정확도를 향상시키기 위해 다양한 방법이 연구되고 있다. 또한 미세먼지의 정확한 원인과 영향을 파악하기 위해 이러한 다양한 요소들을 고려하는 연구들이 활발히 이루어지고 있다. 본 논문에서는 PM 2.5 와 상관성이 있는 데이터를 계절을 기준으로 구분하여 학습하는 예측 모델과 특정 농도를 기준으로 저농도와 고농도를 구분하여 학습하는 모델을 통해 예측 성능의 비교 및 분석을 진행하였다. 기상데이터와 대기오염 물질 데이터를 사용하였으며 PM 2.5 와 상관관계를 확인하여 학습 및 평가를 위한 데이터를 구성하였다. 계절별 예측 모델과 농도별 예측 모델은 LSTM으로 설계하였으며, 세부 파라미터는 하이퍼 파라미터 탐색을 통해 적용하였다. 예측 모델의 성능 평가는 정확도, RMSE, MAPE, 저농도와 고농도 구간에서의 정확도 그리고 AQI를 기준으로 4개의 범위에 대한 정확도로 진행하였다. 성능 평가 결과, 농도별 학습을 진행한 예측 모델이 AQI 기준 “나쁨” 구간의 정확도에서 91.02%의 정확도를 보였으며, 계절별 학습을 진행한 예측 모델보다 전반적으로 좋은 성능을 보였다.
Research on particulate matter is advancing in real-time, and various methods are being studied to improve the accuracy of prediction models. Furthermore, studies that take into account various factors to understand the precise causes and impacts of particulate matter are actively being pursued. This paper trains an LSTM model using seasonal data and another LSTM model using concentration-based data. It compares and analyzes the PM 2.5 prediction performance of the two models. To train the model, weather data and air pollutant data were collected. The collected data was then used to confirm the correlation with PM 2.5 . Based on the results of the correlation analysis, the data was structured for training and evaluation. The seasonal prediction model and the concentration-specific prediction model were designed using the LSTM algorithm. The performance of the prediction model was evaluated using accuracy, RMSE, and MAPE. As a result of the performance evaluation, the prediction model learned by concentration had an accuracy of 91.02% in the “bad” range of AQI. And overall, it performed better than the prediction model trained by season. |
---|---|
Bibliography: | THE KOREA NAVIGATION INSTITUTE KISTI1.1003/JNL.JAKO202407933636670 |
ISSN: | 1226-9026 2288-842X |