클라우드 플랫폼을 이용한 딥러닝 기반 장애인 주차구역 관리 시스템 구현
본 연구는 딥러닝과 클라우드 플랫폼을 이용하여 장애인 복지 증진을 위한 장애인 주차 공간을 관리하는 시스템을 제안하였다. 딥러닝은 주차 영역의 자동차 영상에서 번호판 검출을 위하여 YOLO (you only look once)를 사용하였으며, 추출된 숫자 및 문자 영상에서 번호판 문자 인식을 위하여 CNN (convolutional neural network)을 사용하였다. 본 시스템은 실시간 관리가 가능하고, 동영상만으로 관리할 수 있도록 간소화하였다. 또한 기존 OCR (optical character recognition)보다...
Saved in:
Published in | 한국항행학회논문지 Vol. 25; no. 2; pp. 162 - 168 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Korean |
Published |
한국항행학회
30.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 본 연구는 딥러닝과 클라우드 플랫폼을 이용하여 장애인 복지 증진을 위한 장애인 주차 공간을 관리하는 시스템을 제안하였다. 딥러닝은 주차 영역의 자동차 영상에서 번호판 검출을 위하여 YOLO (you only look once)를 사용하였으며, 추출된 숫자 및 문자 영상에서 번호판 문자 인식을 위하여 CNN (convolutional neural network)을 사용하였다. 본 시스템은 실시간 관리가 가능하고, 동영상만으로 관리할 수 있도록 간소화하였다. 또한 기존 OCR (optical character recognition)보다 한글 문자 인식률을 높임으로서 안정성 및 정확성이 있으며, CCTV (closed circuit television)만 설치하면 주차관리가 가능하도록 함으로서 관리 영역의 확장성의 특장점을 가진다. 본 시스템은 기징 중요한 요소인 정확한 번호판 인식률을 높이는 연구와 다소 성능이 낮은 라즈베리 파이 환경에서 YOLO와 CNN 알고리즘 등을 실행하기 위한 처리속도 문재에 대한 지속적 연구가 필요하다.
This study proposed a system that manages parking spaces for the disabled, this will lead to the promotion of welfare for those who are disabled by using deep learning and cloud platforms. Deep learning used you only look once (YOLO) for license plate detection concerning car images in parking areas, and convolutional neural network (CNN) was used for license plate character recognition from extracted numbers and text images. This system can be managed in real time, and it has been simplified so that it can be managed only with video. In addition, it is recognized and accurate by increasing the recognition rate of Korean characters compared to the existing optical character recognition (OCR), and it has the advantage of scalability in the management area by enabling parking management but only if closed circuit television (CCTV) is installed. This system requires a study to increase the accurate license plate recognition rate. This is an important factor, and a continuous study on the processing speed problem to execute YOLO and CNN algorithms in a somewhat low performance raspberry environment. |
---|---|
Bibliography: | THE KOREA NAVIGATION INSTITUTE KISTI1.1003/JNL.JAKO202115463138794 |
ISSN: | 1226-9026 2288-842X |