인공신경망 기반 손동작 인식기의 설계 및 구현
본 논문에서는 RCE (restricted coulomb energy) 신경망을 이용한 손동작 인식기를 제안하고, 이의 실시간 학습 및 인식을 위한 하드 웨어 구현 결과를 제시한다. RCE 신경망은 네트워크 구조가 학습에 따라 유동적이며, 학습 알고리즘이 여타 신경망에 비해 비교적 간단하기 때문에 실시간 학습 및 인식이 가능하므로 손동작 인식기에 적합한 장점을 갖는다. FPGA 기반 검증 플랫폼을 사용하여 3D 숫자 데이터 셋을 생성하였으며, 설계된 손동작 인식기는 3D 숫자 데이터 셋에 대해 98.8%의 인식 정확도를 나타냈다....
Saved in:
Published in | 한국항행학회논문지 Vol. 22; no. 6; pp. 675 - 680 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | Korean |
Published |
한국항행학회
31.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 본 논문에서는 RCE (restricted coulomb energy) 신경망을 이용한 손동작 인식기를 제안하고, 이의 실시간 학습 및 인식을 위한 하드 웨어 구현 결과를 제시한다. RCE 신경망은 네트워크 구조가 학습에 따라 유동적이며, 학습 알고리즘이 여타 신경망에 비해 비교적 간단하기 때문에 실시간 학습 및 인식이 가능하므로 손동작 인식기에 적합한 장점을 갖는다. FPGA 기반 검증 플랫폼을 사용하여 3D 숫자 데이터 셋을 생성하였으며, 설계된 손동작 인식기는 3D 숫자 데이터 셋에 대해 98.8%의 인식 정확도를 나타냈다. 제안된 손동작 인식기는 Intel-Altera cyclone Ⅳ FPGA 기반 구현 결과, 26,702개의 logic elements로 구현 가능함을 확인하였으며, 70MHz의 동작 주파수로 실시간 학습 및 인식 결과에 대한 검증을 수행하였다.
In this paper, we propose a hand gesture recognizer using restricted coulomb energy (RCE) neural network, and present hardware implementation results for real-time learning and recognition. Since RCE-NN has a flexible network architecture and real-time learning process with low complexity, it is suitable for hand recognition applications. The 3D number dataset was created using an FPGA-based test platform and the designed hand gesture recognizer showed 98.8% recognition accuracy for the 3D number dataset. The proposed hand gesture recognizer is implemented in Intel-Altera cyclone IV FPGA and confirmed that it can be implemented with 26,702 logic elements and 258Kbit memory. In addition, real-time learning and recognition verification were performed at an operating frequency of 70MHz. |
---|---|
Bibliography: | THE KOREA NAVIGATION INSTITUTE KISTI1.1003/JNL.JAKO201810866004966 |
ISSN: | 1226-9026 2288-842X |
DOI: | 10.12673/jant.2018.22.6.675 |