중부 평야지에서 사료용 벼와 주요 동계사료작물 이모작 시 생산성

In order to establish an optimal double cropping system to obtain the maximum annual quantity, we investigated the annual productivity of whole-crop silage (WCS) rice, Jowoo (Jw), Yeongwoo (Yw), and Mogwoo (Mw), and winter feed crops (WFC), Italian ryegrass (IRG), Greenfarm (GF), rye Gogu (GU), and...

Full description

Saved in:
Bibliographic Details
Published inKorean journal of crop science Vol. 64; no. 4; pp. 311 - 322
Main Authors 안억근, Eok-keun Ahn, 정응기, Eung-gi Jeong, 박향미, Hyang-mi Park, 정국현, Kuk-hyun Jung, 현웅조, Ung-jo Hyun, 구자환, Ja-hwan Ku
Format Journal Article
LanguageKorean
Published 한국작물학회 31.12.2019
Subjects
Online AccessGet full text
ISSN0252-9777
2287-8432
DOI10.7740/kjcs.2019.64.4.311

Cover

More Information
Summary:In order to establish an optimal double cropping system to obtain the maximum annual quantity, we investigated the annual productivity of whole-crop silage (WCS) rice, Jowoo (Jw), Yeongwoo (Yw), and Mogwoo (Mw), and winter feed crops (WFC), Italian ryegrass (IRG), Greenfarm (GF), rye Gogu (GU), and triticale Joseong (JS), in paddy fields of the central plains of Korea. From 2016 to 2019, each crop was subjected to two standard cultivation methods: WCS rice and WFC optimal. Using the WCS optimal mode, the average dry matter yield (DMY) of WCS rice, early flowering Jw, was 15.8 tons/ha and 21.0 for the mid-late heading Yw; there was no significant difference compared to the 19.2 tons/ha late-flowering Mw (p<0.01). The WFC were not significantly different between GF (3.2 tons/ha) and GU (4.5) sown on September 23rd, while JS was the highest at 12.6 tons/ha (p< 0.001). There was a significant difference in the order of JS (16.6 tons/ha) > GF (10.5) > GU (4.7)(p<0.001) sown on October 11th. For JS sown on October 31st, the DMY was 11.8 tons/ha, which was significantly higher than that of the other two crops (p<0.05). Except for rye GU, DMY was the highest when sown on October 11th. For WFC optimal mode, the average DMY of JS was the highest at 18.3 tons/ha, which was significantly different from that of GF (10.9) and GU (9.6) (p<0.001). The DMY of WCS rice transplanted on May 10th was the highest at 23.0 tons/ha in Mw, which was not significantly different from that of Yw (21.4) but significantly different from that of Jw (15.9) (p<0.05). On transplanting on May 25th, the DMY of Mw was the highest at 24.2 tons/ha; this was not significantly different from that of Yw (20.7), but it was significantly different from that of Jw (18.6) (p<0.05). When transplanted on June 11th, the DMY was 21.3 tons/ha in Yw, which was significantly higher than the DMY of other two cultivars, Jw and Mw (p<0.05). For the WCS rice-WFC double cropping, the total annual DMY was 33.6 tons/ha with the combination of the WCS rice, Yw, and the triticale JS for WCS optimal mode. Meanwhile, the total annual DMY was 39.6 tons/ha with the combination of the triticale JS and the WCS rice, Yw, for WFC optimal mode. In conclusion, the strategies for obtaining the maximum yield of high-quality forage for WCS rice-WFC, WFC-WCS rice double cropping are as follows: 1) cultivation centered on the optimal mode of WFC, and 2) sowing the WFC, triticale JS in mid-October, harvesting the crops around the end of May and transplanting the WCS rice, Yw, in early June to obtain the maximum DMY of 39.6 tons/ha.
Bibliography:The Korean Society of Crop Science
KISTI1.1003/JNL.JAKO201910548329205
http://www.cropbio.or.kr/
ISSN:0252-9777
2287-8432
DOI:10.7740/kjcs.2019.64.4.311