PM10 예측 성능 향상을 위한 농도별 예측 모델 설계
고농도의 경우 저농도와 비교하였을 때, 발생 빈도수의 차이와 발생 환경에 대한 차이로 예측 성능의 한계를 두드러지게 보이고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 인공신경망 알고리즘을 이용하여 저농도와 고농도로 분류하고 구분된 농도별로 특성을 학습시킨 두 가지 예측 모델을 통해 예측을 수행하는 모델을 제안하였다. 저농도와 고농도를 분류하기 위해 DNN 기반의 분류 모델을 설계하고 분류모델을 통해 구분된 저농도와 고농도를 기준으로 농도별 특성을 반영하기 위한 저농도 예측 모델과 고농도 예측 모델을 설계하였다. 농도별 예측...
Saved in:
Published in | 한국항행학회논문지 Vol. 25; no. 6; pp. 576 - 581 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Korean |
Published |
한국항행학회
31.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1226-9026 2288-842X |
Cover
Summary: | 고농도의 경우 저농도와 비교하였을 때, 발생 빈도수의 차이와 발생 환경에 대한 차이로 예측 성능의 한계를 두드러지게 보이고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 인공신경망 알고리즘을 이용하여 저농도와 고농도로 분류하고 구분된 농도별로 특성을 학습시킨 두 가지 예측 모델을 통해 예측을 수행하는 모델을 제안하였다. 저농도와 고농도를 분류하기 위해 DNN 기반의 분류 모델을 설계하고 분류모델을 통해 구분된 저농도와 고농도를 기준으로 농도별 특성을 반영하기 위한 저농도 예측 모델과 고농도 예측 모델을 설계하였다. 농도별 예측 모델의 성능 평가 결과, 저농도 예측 정확도가 90.38%, 고농도 예측 정확도는 96.37%의 예측 정확도를 보였다.
Compared to a low concentration, a high concentration clearly entails limitations in terms of predictive performance owing to differences in its frequency and environment of occurrence. To resolve this problem, in this study, an artificial intelligence neural network algorithm was used to classify low and high concentrations; furthermore, two prediction models trained using the characteristics of the classified concentration types were used for prediction. To this end, we constructed training datasets using weather and air pollutant data collected over a decade in the Cheonan region. We designed a DNN-based classification model to classify low and high concentrations; further, we designed low- and high-concentration prediction models to reflect characteristics by concentration type based on the low and high concentrations classified through the classification model. According to the results of the performance assessment of the prediction model by concentration type, the low- and high-concentration prediction accuracies were 90.38% and 96.37%, respectively. |
---|---|
Bibliography: | THE KOREA NAVIGATION INSTITUTE KISTI1.1003/JNL.JAKO202135649633990 |
ISSN: | 1226-9026 2288-842X |