공정의 선후행관계를 이용한 공종 이미지 분류 성능 향상
Classifying work trades using images can serve an important role in a multitude of advanced applications in construction management and automated progress monitoring. However, images obtained from work sites may not always be clean. Defective images can damage an image classifier's accuracy whi...
Saved in:
Published in | 한국건설관리학회 논문집, 22(1) Vol. 22; no. 1; pp. 106 - 115 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Korean |
Published |
한국건설관리학회
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2005-6095 2465-9703 |
Cover
Summary: | Classifying work trades using images can serve an important role in a multitude of advanced applications in construction management and automated progress monitoring. However, images obtained from work sites may not always be clean. Defective images can damage an image classifier's accuracy which gives rise to a needs for a method to enhance a work trade image classifier's performance. We propose a method that uses work dependency information to aid image classifiers. We show that using work dependency can enhance the classifier's performance, especially when a base classifier is not so great in doing its job. 이미지를 이용해 공종을 분류하는 작업은 건설 관리와 공정 관리와 같은 더욱 복잡한 어플리케이션에서 중요한 역할을 수행할 수 있다. 하지만, 공사 현장에서 수집한 이미지들은 항상 깨끗하지 않을 수 있고, 이와 같이 문제가 있는 이미지들은 이미지 분류기의 성능에 부정적인 타격을 입힐 수 있다. 이러한 가능성은 공종을 판별하는 시스템을 보조할 수 있는 데이터나 방법의 필요성을 부각한다. 본 연구에서 우리는 공종의 선·후행 관계를 이용해 이미지 분류기를 보조하여 공종을 판별하는 시스템의 성능을 높이는 방법을 제시한다. 그리고 제시하는 방법이 공종 판별의 성능을 향상시킬 수 있다는 것을 보인다. 특히, 이미지 판별기의 성능이 좋지 않을때 더욱 드라마틱한 성능의 향상을 경험할 수 있다는 것을 알 수 있었다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202109554085187 |
ISSN: | 2005-6095 2465-9703 |